若函數(shù)f(x)=loga(3-ax)(a>0,a≠1)在區(qū)間[1,2]上單調(diào)遞減,則a的取值范圍是( 。
分析:先確定內(nèi)函數(shù)為單調(diào)減函數(shù),再利用3-ax>0在區(qū)間[1,2]上恒成立,即可求得a的取值范圍.
解答:解:∵t=3-ax(a>0)在區(qū)間[1,2]上單調(diào)遞減,函數(shù)f(x)=lo
g
(3-ax)
a
(a>0,a≠1)在區(qū)間[1,2]上單調(diào)遞減,
∴a>1
∵t=3-ax>0在區(qū)間[1,2]上恒成立
∴3-2a>0
∴a<
3
2

∴1<a<
3
2

故選C.
點評:本題考查復合函數(shù)的單調(diào)性,考查學生分析解決問題的能力,確定內(nèi)、外函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:陜西省漢中地區(qū)2007-2008學年度高三數(shù)學第一學期期中考試試卷(理科) 題型:022

若函數(shù)f(x)=的定義域為M,g(x)=lo(2+x=6x2)的單調(diào)遞減區(qū)間是開區(qū)間N,設(shè)全集U=R,則M∩CU(N)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:汨羅市第三中學2008屆高三第二次月考2、數(shù)學 題型:044

函數(shù)f(x)=lo(x2-2ax+3).

(1)若f(x)的定義域為R,值域為(-∞,-1],試求實數(shù)a的值;

(2)若f(x)在(-∞,1]內(nèi)是增函數(shù),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:蘇教版江蘇省揚州市2007-2008學年度五校聯(lián)考高三數(shù)學試題 題型:044

已知函數(shù)(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是單調(diào)減函數(shù),求實數(shù)m的取值范圍;

(2)設(shè)g(x)=f(x)+lnx,當m≥-2時,求g(x)在上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省莒南一中2008-2009學年度高三第一學期學業(yè)水平階段性測評數(shù)學文 題型:044

設(shè)f(x)=lo的奇函數(shù),a為常數(shù),

(Ⅰ)求a的值;

(Ⅱ)證明:f(x)在(1,+∞)內(nèi)單調(diào)遞增;

(Ⅲ)若對于[3,4]上的每一個x的值,不等式f(x)>()x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案