【題目】下列四種說法:

①命題,的否定是;

②若不等式的解集為,則不等式的解集為

③對于,恒成立,則實數(shù)a的取值范圍是

④已知p,q),若pq的充分不必要條件,則實數(shù)a的取值范圍是

正確的有________.

【答案】②③④

【解析】

根據(jù)全稱命題否定的求解,二次不等式的求解,恒成立問題求參數(shù)的方法以及由命題的充分性求參數(shù)范圍的方法,結合選項進行逐一分析即可求得.

對①:命題,的否定是,,故①錯誤;

對②:不等式的解集為

故可得,解得,

故不等式等價于,

解得,故②正確;

,恒成立

等價于,當時,顯然不成立;

時,只需即可,

解得,故正確;

對④:pq的充分不必要條件,故可得恒成立.

則只需,

整理得即可,又,故解得.

故④正確.

故答案為:②③④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】小明下班回家途經(jīng)3個有紅綠燈的路口,交通法規(guī)定:若在路口遇到紅燈,需停車等待;若在路口沒遇到紅燈,則直接通過.經(jīng)長期觀察發(fā)現(xiàn):他在第一個路口遇到紅燈的概率為,在第二、第三個道口遇到紅燈的概率依次減小,在三個道口都沒遇到紅燈的概率為,在三個道口都遇到紅燈的概率為,且他在各路口是否遇到紅燈相互獨立.

1)求小明下班回家途中至少有一個道口遇到紅燈的概率;

2)求小明下班回家途中在第三個道口首次遇到紅燈的概率;

3)記為小明下班回家途中遇到紅燈的路口個數(shù),求數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,對任何正整數(shù)n都有:

1)若數(shù)列是首項和公差都是1的等差數(shù)列,求證:數(shù)列是等比數(shù)列;

2)若數(shù)列是首項為1的等比數(shù)列,數(shù)列是否是等差數(shù)列?若是請求出通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(如圖所示),且點在直線的左上方.

1)求橢圓的方程;

2)若,求的面積;

3)證明:的內切圓的圓心在一條定直線上。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】實驗中學從高二級部中選拔一個班級代表學校參加學習強國知識大賽,經(jīng)過層層選拔,甲、乙兩個班級進入最后決賽,規(guī)定回答1個相關問題做最后的評判選擇由哪個班級代表學校參加大賽.每個班級6名選手,現(xiàn)從每個班級6名選手中隨機抽取3人回答這個問題已知這6人中,甲班級有4人可以正確回答這道題目,而乙班級6人中能正確回答這道題目的概率每人均為,甲、乙兩班級每個人對問題的回答都是相互獨立,互不影響的.

1)求甲、乙兩個班級抽取的6人都能正確回答的概率;

2)分別求甲、乙兩個班級能正確回答題目人數(shù)的期望和方差、,并由此分析由哪個班級代表學校參加大賽更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關于生態(tài)文明建設進展情況的調查,調查數(shù)據(jù)表明,環(huán)境治理和保護問題仍是百姓最為關心的熱點,參與調查者中關注此問題的約占.現(xiàn)從參與關注生態(tài)文明建設的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調查,求第2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在四棱錐中,側棱平面,底面是直角梯形,,為側棱中點.

1)設為棱上的動點,試確定點的位置,使得平面平面,并寫出證明過程;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了使房價回歸到收入可支撐的水平,讓全體人民住有所居,近年來全國各一、二線城市打擊投機購房,陸續(xù)出臺了住房限購令.某市一小區(qū)為了進一步了解已購房民眾對市政府岀臺樓市限購令的認同情況,隨機抽取了本小區(qū)50戶住戶進行調查,各戶人平均月收入(單位:千元)的戶數(shù)頻率分布直方圖如圖,其中贊成限購的戶數(shù)如下表:

人平均月收入

贊成戶數(shù)

4

9

12

6

3

1

1)若從人平均月收入在的住戶中再隨機抽取兩戶,求所抽取的兩戶至少有一戶贊成樓市限購令的概率;

2)若將小區(qū)人平均月收入不低于7千元的住戶稱為高收入戶,人平均月收入低于7千元的住戶稱為非高收入戶根據(jù)已知條件完成如圖所給的列聯(lián)表,并說明能否有的把握認為收入的高低贊成樓市限購令有關.

非高收入戶

高收入戶

總計

贊成

不贊成

總計

附:臨界值表

0.1

0.05

0.010

0.001

2.706

3.841

6.63.5

10.828

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,,是離心率為的橢圓的左、右焦點,直線,將線段,分成兩段,其長度之比為,設上的兩個動點,線段的中垂線與橢圓交于兩點,線段的中點在直線.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

同步練習冊答案