已知函數(shù)f(x)=
3
sinx+cosx,x∈R.
(1)求f(x)的最小正周期
(2)求f(x)的最大值及此時(shí)x的取值集合;
(3)求f(x)的單調(diào)遞減區(qū)間.
考點(diǎn):兩角和與差的正弦函數(shù),復(fù)合三角函數(shù)的單調(diào)性
專(zhuān)題:三角函數(shù)的求值
分析:(1)化簡(jiǎn)可得f(x)=2sin(x+
π
6
),由周期公式可得;
(2)當(dāng)x+
π
6
=2kπ+
π
2
時(shí),f(x)取最大值2,易得此時(shí)x的集合;
(3)由2kπ+
π
2
≤x+
π
6
≤2kπ+
2
解不等式可得單調(diào)遞減區(qū)間.
解答: 解:(1)化簡(jiǎn)可得f(x)=
3
sinx+cosx=2sin(x+
π
6
),
∴f(x)的最小正周期T=
1
=2π;
(2)當(dāng)x+
π
6
=2kπ+
π
2
,即x=2kπ+
π
3
,k∈Z時(shí),
f(x)取最大值2,此時(shí)x的取值集合為{x|x=2kπ+
π
3
,k∈Z};
(3)由2kπ+
π
2
≤x+
π
6
≤2kπ+
2
可得2kπ+
π
3
≤x≤2kπ+
3
,
∴f(x)的單調(diào)遞減區(qū)間為[2kπ+
π
3
,2kπ+
3
],(k∈Z)
點(diǎn)評(píng):本題考查兩角和與差的正弦函數(shù),涉及設(shè)計(jì)師的周期性和單調(diào)性及最值,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|3≤x<6}B={x|x≤-1或x≥5},求:
(Ⅰ)(∁RA)∪B;
(Ⅱ)A∪(∁RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2,判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=x2-2bx+2在區(qū)間[3,+∞)上是增函數(shù),則b的取值范圍為(  )
A、b=3B、b≥3
C、b≤3D、b≠3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,其中h是邊AB上的高,請(qǐng)同學(xué)們利用所學(xué)知識(shí)給出這個(gè)不等式:a+b≥
c2+4h2
的證明.
(2)在△ABC中,h是邊AB上的高,已知
cosB
sinB
+
cosA
sinA
=2,并且該三角形的周長(zhǎng)是12;
①求證:c=2h;
②求此三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=(
x
+
3
x
n(n∈N+)展開(kāi)式各項(xiàng)的系數(shù)和為P,二項(xiàng)式系數(shù)之和為S,P+S=72.
(1)求n的值;
(2)求展開(kāi)式中的常數(shù)項(xiàng);
(3)記g(x)=(2x3-1)f(x),求g(x)展開(kāi)式中含x 
3
2
的項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=x2與直線x+y=2所圍圖形的面積
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從甲、乙、丙等10名中職生中,任意選取3名,報(bào)名參加“星光計(jì)劃”技能競(jìng)賽,恰好選上甲、乙兩人的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)-xf′(x)>0(其中f′(x)是f(x)的導(dǎo)函數(shù)).設(shè)a=
log24
f(log24)
,b=
2
f(
2
)
,c=
lg
1
5
f(lg
1
5
)
,則a,b,c的大小關(guān)系是( 。
A、c>a>b
B、c>b>a
C、a>b>c
D、a>c>b

查看答案和解析>>

同步練習(xí)冊(cè)答案