Processing math: 100%
2.已知圓(x+1)2+y2=2,則其圓心和半徑分別為( �。�
A.(1,0),2B.(-1,0),2C.(1,0),2D.(-1,0),2

分析 利用圓的標(biāo)準(zhǔn)方程,即可得出結(jié)論.

解答 解:圓(x+1)2+y2=2的圓心為(-1,0),
半徑為2
故選:D.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=alnx-bx2(x>0)
(1)若函數(shù)f(x)的圖象在點(diǎn)(1,-12)處的切線與x軸平行,探究函數(shù)f(x)在[1e,e]上是否存在極小值;
(2)當(dāng)a=1,b=0時(shí),函數(shù)g(x)=f(x)-kx,k為常數(shù),若函數(shù)g(x)有兩個(gè)相異零點(diǎn)x1,x2,證明:x1,x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a4+a10=20,則S13=130.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且2n+1,Sn,a成等差數(shù)列(n∈N*).
(1)求a的值及數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(1-an)log2(anan+1),求數(shù)列{1n}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份20112012201320142015
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千億元)567810
(1)求y關(guān)于t的回歸方程ˆy=ˆt+ˆa
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2016年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程ˆy=ˆt+ˆa中,
{b=ni=1ti¯tyi¯yni=1ti¯t2=ni=1tiyin¯t¯yni=1ti2n¯t2a=¯yb¯t

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)D,E,F(xiàn)分別△ABC的三邊AB,BC,CA的中點(diǎn),則EA+DC=( �。�
A.BCB.3DFC.BFD.32BF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,底面是邊長(zhǎng)為2的正三角形,倒棱AA1⊥平面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=2FB=2.
(Ⅰ)若點(diǎn)M是線段AC的中點(diǎn),證明:
(1)MB∥平面AEF;
(2)平面AEF⊥平面ACC1A1;
(Ⅱ)求三棱錐B-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)={3x2xx212xx2,則f(f(-3))的值為( �。�
A.132B.-128C.128D.-132

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知雙曲線x2a2-y22=1(a>0,b>0)的右焦點(diǎn)F2的坐標(biāo)是(4,0),過(guò)F2引圓x2+y2=a2的兩條切線,切點(diǎn)分別為A,B,∠AOB=120°(O為坐標(biāo)原點(diǎn)),則雙曲線的標(biāo)準(zhǔn)方程為x264y248=1

查看答案和解析>>

同步練習(xí)冊(cè)答案