【題目】已知拋物線:內(nèi)有一點(diǎn),過(guò)的兩條直線,分別與拋物線交于,和,兩點(diǎn),且滿足,,已知線段的中點(diǎn)為,直線的斜率為.
(1)求證:點(diǎn)的橫坐標(biāo)為定值;
(2)如果,點(diǎn)的縱坐標(biāo)小于3,求的面積的最大值.
【答案】(1)見(jiàn)證明;(2)
【解析】
(1)設(shè)中點(diǎn)為,根據(jù)向量的線性運(yùn)算可知,且,和三點(diǎn)共線,利用點(diǎn)差法可得,,即,可知軸,故為定值(2)由得到,設(shè),,聯(lián)立直線與拋物線方程可求,寫(xiě)出面積公式即可求最值.
(1)設(shè)中點(diǎn)為,則由,可推得,,這說(shuō)明,且,和三點(diǎn)共線.
對(duì),使用點(diǎn)差法,可得,即.
同理.
于是,即軸,所以為定值.
(2)由得到,設(shè),,聯(lián)立
得,所以,,
根據(jù)點(diǎn)到直線的距離公式知P到AB的距離為,
于是,令x=,則,
,令得,當(dāng)時(shí), ,函數(shù)為增函數(shù),當(dāng)時(shí),,函數(shù)為減函數(shù),故當(dāng),即時(shí),有最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,平面ABCD,底面ABCD是正方形,,E為PC上一點(diǎn),當(dāng)F為DC的中點(diǎn)時(shí),EF平行于平面PAD.
(Ⅰ)求證:平面PCB;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn).
(1)寫(xiě)出拋物線的標(biāo)準(zhǔn)方程及其準(zhǔn)線方程,并求拋物線的焦點(diǎn)到準(zhǔn)線的距離;
(2)過(guò)點(diǎn)且斜率存在的直線與拋物線交于不同的兩點(diǎn),,且點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線與軸交于點(diǎn).
(i)求點(diǎn)的坐標(biāo);
(ii)求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年上半年我國(guó)多個(gè)省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時(shí)間豬肉價(jià)格暴漲,其他肉類價(jià)格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個(gè)問(wèn)題,我國(guó)政府一方面鼓勵(lì)有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個(gè)國(guó)家開(kāi)放豬肉進(jìn)口,擴(kuò)大肉源,確保市場(chǎng)供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場(chǎng)形勢(shì),決定響應(yīng)政府號(hào)召,擴(kuò)大生產(chǎn),決策層調(diào)閱了該企業(yè)過(guò)去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為與具有線性回歸關(guān)系,請(qǐng)幫他求出關(guān)于的線性回歸方程(保留小數(shù)點(diǎn)后兩位有效數(shù)字)
(2)研究員乙根據(jù)以上數(shù)據(jù)得出與的回歸模型:.為了評(píng)價(jià)兩種模型的擬合結(jié)果,請(qǐng)完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點(diǎn)的殘差);
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計(jì)值 | |||||
殘差 | ||||||
模型乙 | 估計(jì)值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過(guò)比較與的大小,判斷哪個(gè)模型擬合效果更好;
(3)根據(jù)市場(chǎng)調(diào)查,生豬存欄數(shù)量達(dá)到1萬(wàn)頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬(wàn)頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.2元.若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問(wèn)該生豬存欄數(shù)量選擇1萬(wàn)頭還是1.2萬(wàn)頭能獲得更多利潤(rùn)?請(qǐng)說(shuō)明理由.(利潤(rùn)=收入-成本)
參考公式:,
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(是常數(shù)).
(1)若,求函數(shù)的值域;
(2)若為奇函數(shù),求實(shí)數(shù).并證明的圖像始終在的圖像的下方;
(3)設(shè)函數(shù),若對(duì)任意,以為邊長(zhǎng)總可以構(gòu)成三角形,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的焦距為,且橢圓過(guò)點(diǎn),直線與圓: 相切,且與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)求三角形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.華為公司研發(fā)的5G技術(shù)是中國(guó)在高科技領(lǐng)域的重大創(chuàng)新,目前處于世界領(lǐng)先地位,今年即將投入使用,它必將為人們生活帶來(lái)別樣的精彩,成為每個(gè)中國(guó)人的驕傲.現(xiàn)假設(shè)在一段光纖中有條通信線路,需要輸送種數(shù)據(jù)包,每條線路單位時(shí)間內(nèi)輸送不同數(shù)據(jù)包的大小數(shù)值如表所示.若在單位時(shí)間內(nèi),每條線路只能輸送一種數(shù)據(jù)包,且使完成種數(shù)據(jù)包輸送的數(shù)值總和最大,則下列敘述正確的序號(hào)是_______.
①甲線路只能輸送第四種數(shù)據(jù)包;
②乙線路不能輸送第二種數(shù)據(jù)包;
③丙線路可以不輸送第三種數(shù)據(jù)包;
④丁線路可以輸送第三種數(shù)據(jù)包;
⑤戊線路只能輸送第四種數(shù)據(jù)包.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com