已知cosθ=
1
3
,θ∈(0,π),則cos(π+2θ)等于
(  )
A、-
4
2
9
B、
4
2
9
C、-
7
9
D、
7
9
分析:根據(jù)誘導公式cos(π+θ)=-cosθ和二倍角的余弦公式cos2θ=cos2θ-sin2θ化簡,將cosθ=
1
3
代入即可求出值.
解答:解:因為sin2θ+cos2θ=1,cosθ=
1
3

cos(π+2θ)=-cos2θ=-(cos2θ-sin2θ)=-(2cos2θ-1)=
7
9

故選D
點評:考查學生運用誘導公式化簡求值的能力,利用二倍角的余弦公式化簡的能力,以及靈活運用同角三角函數(shù)間基本關系的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知cosα=
1
3
,且-
π
2
<α<0
,則
cos(-α-π)sin(2π+α)tan(2π-α)
sin(
2
-α)cos(
π
2
+α)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosβ=-
1
3
,sin(α+β)=
7
9
,α∈(0,
π
2
),β∈(
π
2
,π).
(1)求cos2β的值;
(2)求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=
1
3
,且-
π
2
<α<0
,求
cos(-α-π)•sin(π-α)•tan(2π-α)
sin(
2
-α)•cos(
π
2
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=-
13
,α為第二象限角,求sinα和tanα及tan2α的值.

查看答案和解析>>

同步練習冊答案