D
分析:把已知的等式左邊利用

=

化簡,右邊利用

•

=|

||

|cosα(其中α為兩向量的夾角)化簡,然后在利用正弦定理把邊化為角后,根據C為三角形的內角可得sinC不為0,在等式兩邊同時除以sinC,再根據三角形的內角和定理及誘導公式可得sinC=sin(A+B),利用兩角和的正弦函數公式化簡,移項合并后再利用兩角差的正弦函數公式化簡,可得sin(A-B)=0,由A和B都為三角形的內角,可得A=B,從而利用等角對等邊可得三角形為等腰三角形.
解答:根據

=2

•

得到:c
2=2bccosA,
由正弦定理

=

=2R,可得sin
2C=2sinBsinCcosA,
又C為三角形的內角,得到sinC≠0,
可得sinC=2sinBcosA,
又sinC=sin[π-(A+B)]=sin(A+B),
∴sin(A+B)=sinAcosB+cosAsinB=2sinBcosA,即sinAcosB-cosAsinB=0,
∴sin(A-B)=0,且A和B都為三角形的內角,
∴A=B,
則△ABC的形狀為等腰三角形.
故選D
點評:此題考查了三角形形狀的判斷,涉及的知識有平面向量的數量積運算,正弦定理,誘導公式,以及兩角和與差的正弦函數公式,其中利用平面向量的數量積運算法則及正弦定理化簡已知的等式是本題的突破點,熟練掌握公式是解本題的關鍵.