【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得平面與平面所成銳二面角的平面角為,且滿足?若不存在,請說明理由;若存在,求出的長度.
【答案】(1)見解析(2)在線段上存在點(diǎn)滿足題意,.
【解析】
(1)如圖所示的等腰梯形中,經(jīng)過點(diǎn),分別作,,垂足為.利用矩形的性質(zhì)可求出,在中,利用余弦定理可得,利用勾股定理的逆定理可得,再利用面面垂直的性質(zhì)定理即可證明平面;
(2)如圖所示,建立空間直角坐標(biāo)系.設(shè),設(shè)平面的法向量,可得,取平面的法向量,利用,,即可求出.
(1)如圖所示的等腰梯形中,經(jīng)過點(diǎn),分別作,,垂足為,則為矩形,.在中,,則,
同理可得,.
在中,,
,,.
又∵四邊形為矩形,平面平面,
平面平面,∴平面.
(2)如圖所示,建立空間直角坐標(biāo)系.
,,,設(shè),
,
設(shè)平面的法向量,
則,∴
取.
取平面的法向量.
由,
由題意可得:,.
解得.
因此在線段上點(diǎn),使得平面與平面所成銳二面角的平面角為,且滿足,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)針對都市熟男(三線以上城市,歲男性)消費(fèi)水平的調(diào)查顯示,對于最近一年內(nèi)是否購買過以下七類高價(jià)商品,全體被調(diào)查者,以及其中包括的1980年及以后出生(80后)被調(diào)查者,1980年以前出生(80前)被調(diào)查者回答“是”的比例分別如下:
全體被調(diào)查者 | 80后被調(diào)查者 | 80前被調(diào)查者 | |
電子產(chǎn)品 | 56.9% | 66.0% | 48.5% |
服裝 | 23.0% | 24.9% | 21.2% |
手表 | 14.3% | 19.4% | 9.7% |
運(yùn)動、戶外用品 | 10.4% | 11.1% | 9.7% |
珠寶首飾 | 8.6% | 10.8% | 6.5% |
箱包 | 8.1% | 11.3% | 5.1% |
個(gè)護(hù)與化妝品 | 6.6% | 6.0% | 7.2% |
以上皆無 | 25.3% | 17.9% | 32.1% |
根據(jù)表格中數(shù)據(jù)判斷,以下分析錯(cuò)誤的是( )
A. 都市熟男購買比例最高的高價(jià)商品是電子產(chǎn)品
B. 從整體上看,80后購買高價(jià)商品的意愿高于80前
C. 80前超過3成一年內(nèi)從未購買過表格中七類高價(jià)商品
D. 被調(diào)查的都市熟男中80后人數(shù)與80前人數(shù)的比例大約為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為參數(shù),且.
(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值;
(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(Ⅲ)若對(Ⅱ)中所求的取值范圍內(nèi)的任意函數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),是自然對數(shù)的底數(shù).
(1)當(dāng)時(shí),求的單調(diào)增區(qū)間;
(2)若對任意的,(),求的最大值;
(3)若的極大值為,求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)該零件的流水線上隨機(jī)抽取100個(gè)零件為樣本,測量其直徑后,整理得到下表:
直徑/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | |
直徑/mm | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計(jì) |
件數(shù) | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.
(I)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行判定(表示相應(yīng)事件的概率):①;②;③.判定規(guī)則為:若同時(shí)滿足上述三個(gè)式子,則設(shè)備等級為甲;若僅滿足其中兩個(gè),則等級為乙;若僅滿足其中一個(gè),則等級為丙;若全部都不滿足,則等級為丁.試判斷設(shè)備的性能等級.
(Ⅱ)將直徑尺寸在之外的零件認(rèn)定為是“次品”,將直徑尺寸在之外的零件認(rèn)定為“突變品”.從樣本的“次品”中隨意抽取兩件,求至少有一件“突變品”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 ,四點(diǎn),,,中恰有三點(diǎn)在橢圓上.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過的右焦點(diǎn)作斜率為的直線與交于,兩點(diǎn),直線與軸交于點(diǎn),為線段的中點(diǎn),過點(diǎn)作直線于點(diǎn).證明:,,三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家大約在公元222年趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構(gòu)造如圖所示的圖形,它是由個(gè)3全等的等邊三角形與中間的一個(gè)小等邊三角形組成的一個(gè)大等邊三角形,設(shè)DF2AF,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(1) 求拋物線的方程;
(2) 當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(3) 當(dāng)點(diǎn)在直線上移動時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x2+1)﹣e﹣|x|(e為自然對數(shù)的底數(shù)),則不等式f(2x+1)>f(x)的解集是( 。
A. (﹣1,1)B. (﹣∞,﹣1)∪(1,+∞)
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com