(
1
2
)
x
≤1則x的取值是
 
考點:指、對數(shù)不等式的解法
專題:函數(shù)的性質(zhì)及應用,不等式的解法及應用
分析:直接利用指數(shù)函數(shù)的單調(diào)性,求解指數(shù)不等式即可.
解答: 解:因為指數(shù)函數(shù)y=(
1
2
)
x
是減函數(shù),所以(
1
2
)
x
≤1=(
1
2
0
可得x≥0.
故答案為:x≥0.
點評:本題考查指數(shù)不等式的解法,指數(shù)函數(shù)的單調(diào)性的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

電視中某一娛樂性節(jié)目有一種猜價格的游戲,在限定時間內(nèi)(如15秒)猜出某一種商品的售價,就把該商品獎給選手,每次選手給出報價,主持人告訴說高了低了,以猜對或到時為止游戲結(jié)束.如猜一種品牌的電風扇,過程如下:游戲參與者開始報價500元,主持人說高了,300元,高了,260元,低了,280元,低了,290元,高了,285元,低了,288元,你猜對了!恭喜!請問游戲參與者用的數(shù)學知識是
 
(只寫出一個正確答案).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1(0,1),F(xiàn)2(0,-1)分別為橢圓C1
y2
a2
+
x2
b2
=1 (a>b>0)
的上、下焦點,拋物線C2的頂點在坐標原點,焦點為F1,點M是C1與C2在第二象限的交點,且|MF1|=
5
3

(1)求拋物線C2及橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t),kt≠0交橢圓C1于A,B兩點,若橢圓C1上存在點P滿足
OA
+
OB
OP
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二面角α-ΑΒ-β為60°,在平面β內(nèi)有一點P,它到棱AB的距離為2,則點P到平面α的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=log3x,x∈[1,3],則凼數(shù)y=[f(x)]2+2f(x)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將參加學校期末考試的高三年級的400名學生編號為001,002,…,400,已知這400名學生到甲乙丙三棟樓去考試,001到200在甲樓,201到295在乙樓,296到400在丙樓,采用系統(tǒng)抽樣方法抽取一個容量為50的樣本且隨即抽的首個號碼為003,則三個樓被抽中的人數(shù)依次為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列選項中不正確的是( 。
A、兩直線的斜率存在時,它們垂直的等價條件是其斜率之積為-1
B、如果方程Ax+By+C=0表示的直線是y軸,那么系數(shù)A,B,C滿足A≠0,B=C=0
C、Ax+Bx+C=0和2Ax+2Bx+C+1=0表示兩條平行直線的等價條件是A2+B2≠0且C≠1
D、(x-y+5)+k(4x-5y-1)=0表示經(jīng)過直線x-y+5=0與4x-5y-1=0的交點的所有直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x-2
x-1
=
x-2
x-1
成立的條件是( 。
A、x<1
B、x≠1
C、
x-2
x-1
≥0
D、x≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A=90°,AB=1,AC=2,設點P,Q滿足
AP
AB
,
AQ
=(1-λ)
AC
,λ∈R,
BQ
CP
=-2.
(1)令
AB
=
b
,
AC
=
c
,用λ,
b
,
c
表示向量
BQ
CP
;
(2)求λ的值.

查看答案和解析>>

同步練習冊答案