【題目】已知正方體的六個(gè)面的中心可構(gòu)成一個(gè)正八面體,現(xiàn)從正方體內(nèi)部任取一個(gè)點(diǎn),則該點(diǎn)落在這個(gè)正八面體內(nèi)部的概率為(

A.B.C.D.

【答案】C

【解析】

設(shè)正方體的棱長(zhǎng)是1,構(gòu)成的八面體可以看作是由兩個(gè)正四棱錐組成,一個(gè)正四棱錐的高等于正方體棱長(zhǎng)的一半,正四棱錐的底面邊長(zhǎng)根據(jù)勾股定理可知是 ,求出正四棱錐的體積,得到正八面體的體積,得到比值.

解:設(shè)正方體的棱長(zhǎng)是1,

構(gòu)成的八面體可以看作是由兩個(gè)正四棱錐組成,

以上面一個(gè)正四棱錐為例,

它的高等于正方體棱長(zhǎng)的一半,

正四棱錐的底面邊長(zhǎng)根據(jù)勾股定理可知是 ,

∴這個(gè)正四棱錐的體積是 ;

∴構(gòu)成的八面體的體積是2

∴八面體的體積是V1,正方體體積是V2,V1V216

故從正方體內(nèi)部任取一個(gè)點(diǎn),則該點(diǎn)落在這個(gè)正八面體內(nèi)部的概率為:;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過(guò)合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個(gè)()一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說(shuō)明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說(shuō)明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)一次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為

1的分布列及其期望;

2)(i)試說(shuō)明,當(dāng)越大時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;

ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對(duì)產(chǎn)品做檢驗(yàn),廠家將一批產(chǎn)品發(fā)給商家時(shí),商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進(jìn)行檢驗(yàn),求至少有 件是合格品的概率;

2)若廠家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進(jìn)行檢驗(yàn),只有 件都合格時(shí)才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗(yàn)出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形,將梯形沿邊翻折,如圖2,在翻折的過(guò)程中(平面和平面不重合),下面說(shuō)法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過(guò)程中,平面恒成立

D.在翻折的過(guò)程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)在[0,π]上的單調(diào)遞減區(qū)間;

2)在銳角△ABC的內(nèi)角A,B,C所對(duì)邊為ab,c,已知fA)=﹣1,a2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx3,gx)=alnx2xaR.

1)討論gx)的單調(diào)性;

2)是否存在實(shí)數(shù)a,使不等式fxgx)恒成立?如果存在,求出a的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別是,離心率,過(guò)點(diǎn)的直線交橢圓、兩點(diǎn), 的周長(zhǎng)為16.

(1)求橢圓的方程;

(2)已知為原點(diǎn),圓 )與橢圓交于兩點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),若直線、軸分別交于、兩點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地為鼓勵(lì)群眾參與全民讀書活動(dòng),增加參與讀書的趣味性.主辦方設(shè)計(jì)這樣一個(gè)小游戲:參與者拋擲一枚質(zhì)地均勻的骰子(正方體,六個(gè)面上分別標(biāo)注1,2,34,56六個(gè)數(shù)字).若朝上的點(diǎn)數(shù)為偶數(shù).則繼續(xù)拋擲一次.若朝上的點(diǎn)數(shù)為奇數(shù),則停止游戲,照這樣的規(guī)則進(jìn)行,最多允許拋擲3.每位參與者只能參加一次游戲.

1)求游戲結(jié)束時(shí)朝上點(diǎn)數(shù)之和為5的概率;

2)參與者可以選擇兩種方案:方案一:游戲結(jié)束時(shí),若朝上的點(diǎn)數(shù)之和為偶數(shù),獎(jiǎng)勵(lì)3本不同的暢銷書;若朝上的點(diǎn)數(shù)之和為奇數(shù),獎(jiǎng)勵(lì)1本暢銷書.方案二:游戲結(jié)束時(shí),最后一次朝上的點(diǎn)數(shù)為偶數(shù),獎(jiǎng)勵(lì)5本不同的暢銷書,否則,無(wú)獎(jiǎng)勵(lì).試分析哪一種方案能使游戲參與者獲得更多暢銷書獎(jiǎng)勵(lì)?并說(shuō)明判斷的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】鎮(zhèn)江市長(zhǎng)江路江邊春江潮廣場(chǎng)要設(shè)計(jì)一尊鼎型塑像(如圖1),塑像總高度為12米,塑像由兩部分組成,上半部分由四根垂直于水平地面的等高垂直立柱組成(立柱上凸起部分忽略不計(jì)),下半部分由正四棱臺(tái)的上底面四根水平橫柱和正四棱臺(tái)的四根側(cè)棱斜柱組成,如圖2所示.設(shè)計(jì)要求正棱臺(tái)的水平橫柱長(zhǎng)度為4米,下底面邊長(zhǎng)為8米,設(shè)斜柱與地面的所成的角為

1)用表示塑像上半部分立柱的高度,并求的取值范圍?

2)若該塑像上半部分立柱的造價(jià)為千元/米(立柱上凸起部分忽略不計(jì)),下半部分橫柱和斜柱的造價(jià)都為2千元/米,問(wèn)當(dāng)為何值時(shí),塑像總造價(jià)最低?

查看答案和解析>>

同步練習(xí)冊(cè)答案