14.已知集合P={x|2x2-5x+2≤0},函數(shù)y=log2(ax2+2)的定義域為S
(1)若P∩S≠∅,求實數(shù)a的取值范圍
(2)若方程log2(ax2+2)=2在$[{\frac{1}{2},2}]$上有解,求實數(shù)a的取值范圍.

分析 (1)是一個存在性的問題,此類題求參數(shù)一般轉(zhuǎn)化為求最值.若是存在大于某式的值成立,一般令其大于其最小值,
(2)也是一個存在性的問題,其與(1)不一樣的地方是其為一個等式,故應求出解析式對應函數(shù)的值域,讓該參數(shù)是該值域的一個元素即可保證存在性.

解答 解:(1)集合P={x|2x2-5x+2≤0}={x|$\frac{1}{2}≤x≤2$},由已知Q={x|ax2+2>0},若P∩Q≠∅,
則說明在[$\frac{1}{2}$,2]內(nèi)至少有一個x值,使不等式ax2+2>0,即,
在[$\frac{1}{2}$,2]內(nèi)至少有一個x值,使a>-$\frac{2}{{x}^{2}}$成立,-$\frac{1}{{x}^{2}}$的最小值為:-8,
∴a的取值范圍是a>-8;
(2)∵方程log2(ax2+2)=2在$[{\frac{1}{2},2}]$上內(nèi)有解,
∴ax2+2=4即ax2-2=0在$[{\frac{1}{2},2}]$內(nèi)有解,分離a與x,得a=$\frac{2}{{x}^{2}}$∈$[\frac{1}{2},8]$.
即a的取值范圍是:$[\frac{1}{2},8]$.

點評 考查存在性問題求參數(shù)范圍,本題中兩個小題都是存在性,因為其轉(zhuǎn)化的最終形式不一樣,所以求其參數(shù)方式不一樣,一是其最值,一是求值域.答題者應細心體會其不同.此類題一般難度較大,要求有較強的邏輯推理能力進行正確的轉(zhuǎn)化.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\sqrt{3}$x,關于x的方程ax2+bx-$\sqrt{{a}^{2}-^{2}}$=0的兩根為m,n,則點P(m,n)( 。
A.在圓x2+y2=7內(nèi)B.在圓x2+y2=7上
C.在橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1內(nèi)D.在橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某廠有容量300噸的水塔一個,每天從早六點到晚十點供應生活和生產(chǎn)用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量W(噸)與時間t(單位:小時,規(guī)定早晨六點時t=0)的函數(shù)關系為W=100$\sqrt{t}$,水塔的進水量有10級,第一級每小時水10噸,以后每提高一級,進水量增加10噸.若某天水塔原有水100噸,在供應同時打開進水管.問該天進水量應選擇幾級,既能保證該廠用水(即水塔中水不空),又不會使水溢出?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn=$\frac{n(n+1)}{2}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設Tn為數(shù)列{bn}的前n項和,其中bn=$\frac{{{a_{n+1}}}}{{2{S_n}•{S_{n+1}}}}$,求Tn;
(Ⅲ)若存在n∈N*,使得Tn-λan≥3λ成立,求出實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某風景區(qū)水面游覽中心計劃國慶節(jié)當日投入之多3艘游船供游客觀光,過去10年的數(shù)據(jù)資料顯示每年國慶節(jié)當日客流量X(單位:萬人)都大于1,并把客流量分成三段整理得下表:
國慶節(jié)當日客流量X1<X<33≤X≤5X>5
頻數(shù)244
以這10年的數(shù)據(jù)資料記錄的隔斷客流量的頻率作為每年客流量在隔斷發(fā)生的概率,且每年國慶節(jié)當日客流量相互獨立.
(1)求未來連續(xù)3年國慶節(jié)當日中,恰好有1年國慶節(jié)當日客流量超過5萬人的概率;
(2)該水面游覽中心希望投入的游船盡可能使用,但每年國慶節(jié)當日游船最多使用量:(單位:艘)受當日客流量X(單位:萬人)的限制,其關聯(lián)關系如下表:
國慶節(jié)當日客流量X1<X<33≤X≤5X>5
游船最多使用量123
若某艘游船國慶節(jié)當日使用,則水面游覽中心國慶節(jié)當日可獲得利潤3萬元,若某艘游船國慶節(jié)當日不使用,則水面游覽中心國慶節(jié)當日虧損0.5萬元,記Y(單位:萬元)表示該水面游覽中心國慶節(jié)當日獲得總利潤,當Y的數(shù)學期望最大時稱水面游覽中心在國慶節(jié)當日效益最佳,問該水面游覽中心的國慶節(jié)當日應投入多少艘游船才能使該水面游覽中心在國慶節(jié)當日效益最佳?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=-x2+2x-3,x∈[0,2]的值域是[-3,-2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中點.
(1)求證:PB⊥AC.
(2)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.“a>1”是“函數(shù)f(x)=ax-sinx在R上是增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.過點M(-1,1)的動直線l交圓C:x2+y2-2x=0于A,B兩點,O為坐標原點,若在線段AB上的點Q滿足$\frac{1}{|MA|}+\frac{1}{|MB|}=\frac{2}{|MQ|}$,則|OQ|的最小值為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步練習冊答案