A. | 5個(gè) | B. | 6個(gè) | C. | 7個(gè) | D. | 8個(gè) |
分析 令f(x)=$\sqrt{{x}^{2}+2}$-lnx,定義域?yàn)椋?,+∞),利用導(dǎo)數(shù)研究其單調(diào)性極值與最值,畫(huà)出圖象.
解答 解:令f(x)=$\sqrt{{x}^{2}+2}$-lnx,定義域?yàn)椋?,+∞),
令f′(x)=$\frac{x}{\sqrt{{x}^{2}+2}}-\frac{1}{x}$=0,
得x=$\sqrt{2}$,
當(dāng)0<x<$\sqrt{2}$時(shí),f′(x)<0,
當(dāng)x>$\sqrt{2}$時(shí),f′(x)>0.
∴$f(\sqrt{2})$是f(x)定義域(0,+∞)內(nèi)唯一的極值,且是極小值,
故$f(\sqrt{2})$是f(x)的最小值,如圖所示.
f($\sqrt{2}$)=2-ln$\sqrt{2}$.
∵$1<\sqrt{2}<e$,
∴$0<ln\sqrt{2}<1$,
∴$1<f(\sqrt{2})<2$
分類討論:
(m,n)∈{(0,0),(0,2),(0,3),(2,0),(2,2),(2,3),(3,0),(3,2),(3,3)}.
經(jīng)過(guò)驗(yàn)證:只有(0,0)不滿足條件.
∴集合D={(m,n)|A∩B≠∅}中的元素有8個(gè).
故選:D.
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、集合的運(yùn)算性質(zhì),考查了數(shù)形結(jié)合方法、推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 5 | C. | $\frac{14}{7}$ | D. | $\frac{16}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | e-1-(1-ln2)e${\;}^{-\frac{1}{2}}$ | B. | ln$\frac{e}{2}$-e-1 | C. | ln2-e-1 | D. | (1-ln2)e${\;}^{-\frac{1}{2}}$-e-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≥-$\frac{1}{2}$ | B. | a>0 | C. | -$\frac{1}{2}$<a<0 | D. | -$\frac{1}{2}$<a≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 16 | C. | 30 | D. | 31 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{24}{7}$ | B. | $\frac{8}{3}$ | C. | -$\frac{8}{3}$ | D. | -$\frac{24}{7}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com