已知集合A={x|x2-5x+6=0},B={x|ax+2=0},且B∩∁RA=∅,則實(shí)數(shù)a的所有取值組成的集合為( 。
A、{0,-1,-
2
3
}
B、{-1,-
2
3
}
C、{1,
2
3
}
D、{
2
3
}
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:計(jì)算題,集合
分析:化簡(jiǎn)A={x|x2-5x+6=0}={2,3},由B∩∁RA=∅可得B⊆A,從而求實(shí)數(shù)a的所有取值組成的集合.
解答: 解:∵A={x|x2-5x+6=0}={2,3},B∩∁RA=∅,
∴B⊆A,
故ax+2=0無(wú)解或2a+2=0或3a+2=0,
解得,a=0或a=-1或a=-
2
3
,
故選:A.
點(diǎn)評(píng):本題考查了集合的運(yùn)算與集合的包含關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四面體A-BCD中,O,E分別是BD,BC的中點(diǎn),AC=BC=CD=BD=2,AB=AD=
2

(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的余弦值;
(3)求點(diǎn)C到平面AED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤0
,則z=2x+3y的最大值是( 。
A、0
B、
1
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=f(x)是定義在R上的函數(shù),如果存在點(diǎn)A,對(duì)函數(shù)y=f(x)的圖象上的任意P點(diǎn),P關(guān)于A的對(duì)稱點(diǎn)Q也在函數(shù)y=f(x)的圖象上,那么稱函數(shù)y=f(x)的圖象關(guān)于點(diǎn)A對(duì)稱,A稱為函數(shù)y=f(x)的圖象的一個(gè)對(duì)稱中心.
(1)求證:點(diǎn)A(2,0)是函數(shù)y=(x-2)3的對(duì)稱中心;
(2)設(shè)y=f(x)是定義在R上的函數(shù),求證:A(a,b)是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心的充要條件是函數(shù)y=f(x+a)-b是奇函數(shù);
(3)試問(wèn)函數(shù)f(x)=x3-2x2+3的圖象是否關(guān)于某點(diǎn)對(duì)稱?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1
x2
16
-
y2
9
=1的左準(zhǔn)線為l,左、右焦點(diǎn)為F1、F2,拋物線C2的準(zhǔn)線為l,焦點(diǎn)是F2,若C1與C2的一個(gè)交點(diǎn)為P,則|PF2|的值等于( 。
A、4B、8C、30D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線3x-4y-9=0與圓x2+y2=4的位置關(guān)系是( 。
A、相交且過(guò)圓心B、相切
C、相交但不過(guò)圓心D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=mx+
1
x+n
(m,n∈Z),曲線Y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=aln(x-1)-x(a>0),若函數(shù)F(x)=f(x)+g(x)與x軸有兩個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:曲線y=f(x)上任意一點(diǎn)的切線與直線x=1和直線y=x所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log3x-
2
x+1
的零點(diǎn)大約所在區(qū)間為( 。
A、(1,2]
B、(2,3]
C、(3,4]
D、(4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(2x+
π
3
)
的圖象按向量
a
平移后所得的圖象關(guān)于點(diǎn)(-
π
12
,0)
中心對(duì)稱.則向量
a
可以為( 。
A、(
π
12
,0)
B、(
π
6
,0)
C、(-
π
12
,0)
D、(-
π
6
,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案