若定義在[-1,1]上的兩個(gè)函數(shù)f(x)、g(x)分別是偶函數(shù)和奇函數(shù),且它們?cè)赱0,1]上圖象如圖所示,則不等式數(shù)學(xué)公式的解集


  1. A.
    (-數(shù)學(xué)公式,0)∪(數(shù)學(xué)公式,1)
  2. B.
    (-數(shù)學(xué)公式,數(shù)學(xué)公式
  3. C.
    (-1,-數(shù)學(xué)公式
  4. D.
    (-數(shù)學(xué)公式,0)
A
分析:利用奇函數(shù)、偶函數(shù)的對(duì)稱性,奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖象關(guān)于y軸對(duì)稱,表示
f(x)和g(x)的函數(shù)值的符號(hào)相反.
解答:∵定義在[-1,1]上的兩個(gè)函數(shù)f(x)、g(x)分別是偶函數(shù)和奇函數(shù),
函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,且還過點(diǎn)(-1,0)、(-,0),g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且還過點(diǎn)(-1,0),
不等式的解集:(-,0)∪(,1),
故選 A.
點(diǎn)評(píng):本題考查奇函數(shù)、偶函數(shù)的圖象的對(duì)稱性,利用圖象解題,增強(qiáng)直觀性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f (1)=1,若m,n∈[-1,1],m+n≠0時(shí)有
f(m)+f(n)
m+n
>0.
(1)判斷f (x)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:f(x+
1
2
)<f(
1
x-1
);
(3)若f(x)≤t2-2at+1對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對(duì)于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時(shí),有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且其圖象上任意兩點(diǎn)連線的斜率均小于零.
(1)證明f(x)在[-1,1]上是減函數(shù);
(2)如果f(x-c),f(x-c2)的定義域的交集為空集,求實(shí)數(shù)c的取值范圍;
(3)證明:若-1≤c≤2,則f(x-c),f(x-c2)存在公共的定義域,并求出這個(gè)公共的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題四個(gè)命題:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0)上是增函數(shù),θ∈(
π
4
π
2
)
,則f(sinθ)>f(cosθ);
②在△ABC中,A>B是cosA<cosB的充要條件;
③設(shè)函數(shù)f(x)=x2+2(-2≤x<0),其反函數(shù)為f-1(x),則f-1(3)=-1或1.
④在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知b2+c2=a2+bc,則A=
π
3

其中真命題的個(gè)數(shù)有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)已知定義在[-1,1]上的奇函數(shù)f(x),在x∈(0,1]時(shí),f(x)=
2x4x+1

(1)當(dāng)x∈[-1,1]時(shí),求f(x)的解析式;
(2)設(shè)g(x)=-2x•f(x)(-1<x<0),求函數(shù)y=g(x)的值域;
(3)若關(guān)于x的不等式λf(x)<1在x∈(0,1]上有解,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案