如圖,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
3
,EF=2.
(1)求證:AE∥平面DCF;
(2)EF⊥平面DCE;
(3)當AB的長為何值時,二面角A-EF-C的大小為60°?
考點:二面角的平面角及求法,直線與平面平行的判定,直線與平面垂直的判定
專題:綜合題,空間位置關系與距離,空間角
分析:(1)過點E作EG⊥CF并CF于G,連接DG,證明AE平行平面DCF內(nèi)的直線DG,即可證明AE∥平面DCF;
(2)證明EF垂直于平面DCE中的兩條相交直線,即可得出結論;
(3)過點B作BH⊥EF交FE的延長線于H,連接AH,說明∠AHB為二面角A-EF-C的平面角,通過二面角A-EF-C的大小為60°,求出AB即可.
解答: (1)證明:過點E作EG⊥CF并CF于G,連接DG,可得四邊形BCGE為矩形.
又ABCD為矩形,
所以AD⊥∥EG,從而四邊形ADGE為平行四邊形,故AE∥DG.
因為AE?平面DCF,DG?平面DCF,所以AE∥平面DCF.
(2)證明:因為∠CEF=90°,所以EF⊥CE,
因為矩形ABCD和梯形BEFC所在平面互相垂直,
所以DC⊥平面BEFC,
所以DC⊥EF,
因為DC∩CE=C,
所以EF⊥平面DCE;
(3)解:過點B作BH⊥EF交FE的延長線于H,連接AH.
由平面ABCD⊥平面BEFG,AB⊥BC,得AB⊥平面BEFC,
從而AH⊥EF,
所以∠AHB為二面角A-EF-C的平面角.
在Rt△EFG中,因為EG=AD=
3
,EF=2,所以∠CFE=60°,F(xiàn)G=1.
又因為CE⊥EF,所以CF=4,
從而BE=CG=3.
于是BH=BE•sin∠BEH=
3
3
2

因為AB=BH•tan∠AHB,
所以當AB=
9
2
時,二面角A-EF-G的大小為60°.
點評:本題主要考查空間線面平行于垂直,考查二面角A-EF-G的大小等基礎知識,同時考查空間想象能力和推理運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-3x-10<0},B={x|m+1≤x≤2m-1}.
(1)當m=3時,求集合A∩B(∁RA)∩B;
(2)若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平行六面體ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=∠BAA′=∠DAA′=60°,則AC′的長為( 。
A、5
2
B、
62
C、10
D、
97

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+
a
x
(a∈R).
(1)試判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞]上是增函數(shù),求實數(shù)a的取值范圍;
(3)當a=0時,利用(1)(2)的結論,指出f(x)在區(qū)間(-∞,-3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若圓錐的底面半徑為2,軸截面為等腰直角三角形,則圓錐的全面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點A的坐標為(3,2),F(xiàn)為拋物線的焦點,點P是拋物線y2=2x上一動點,求|PA|+|PF|的最小值并求此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,且它的一個焦點與拋物線y2=24x的焦點重合,則此雙曲線的方程為( 。
A、
x2
12
-
y2
24
=1
B、
x2
48
-
y2
96
=1
C、
x2
3
-
2y2
3
=1
D、
x2
3
-
y2
6
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
,
c
a
,
b
上的投影分別是1與2,且|
c
|=
10
,則
c
a
+
b
所成夾角等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果sinα+cosα=
3
4
,那么sinα-cosα的值為
 

查看答案和解析>>

同步練習冊答案