2.函數(shù)y=$\frac{{lg\sqrt{x}}}{{lg(10{x^2})}}$,x∈(10-2,104)且x≠$\frac{{\sqrt{10}}}{10}$的值域為(-∞,$\frac{2}{9}$)∪($\frac{1}{3}$,+∞).

分析 根據(jù)對數(shù)的運算法則將函數(shù)進行化簡,結合分式函數(shù)的性質,利用換元法將函數(shù)進行轉化,然后利用函數(shù)的單調性和值域之間的關系進行求解即可.

解答 解:y=$\frac{{lg\sqrt{x}}}{{lg(10{x^2})}}$=$\frac{\frac{1}{2}lgx}{lg10+lg{x}^{2}}$=$\frac{1}{2}$•$\frac{lgx}{1+2lgx}$=$\frac{1}{4}$•$\frac{lgx}{lgx+\frac{1}{2}}$=$\frac{1}{4}$•$\frac{lgx+\frac{1}{2}-\frac{1}{2}}{lgx+\frac{1}{2}}$=$\frac{1}{4}$•(1-$\frac{\frac{1}{2}}{lgx+\frac{1}{2}}$),
設t=lgx,
∵x∈(10-2,104),
∴t∈(-2,4),
則y=$\frac{1}{4}$•(1-$\frac{\frac{1}{2}}{lgx+\frac{1}{2}}$)=$\frac{1}{4}$•(1-$\frac{\frac{1}{2}}{t+\frac{1}{2}}$),則(-2,-$\frac{1}{2}$)和(-$\frac{1}{2}$,4)上分別單調遞增遞增,
當t∈(-2,-$\frac{1}{2}$)時,y>$\frac{1}{4}$•(1-$\frac{\frac{1}{2}}{-2+\frac{1}{2}}$)=$\frac{1}{3}$,
當t∈(-$\frac{1}{2}$,4)時,y<$\frac{1}{4}$•(1-$\frac{\frac{1}{2}}{4+\frac{1}{2}}$)=$\frac{2}{9}$,
即函數(shù)的值域為(-∞,$\frac{2}{9}$)∪($\frac{1}{3}$,+∞),
故答案為:(-∞,$\frac{2}{9}$)∪($\frac{1}{3}$,+∞)

點評 本題主要考查函數(shù)值域的求解,利用對數(shù)的運算法則以及換元法將函數(shù)進行轉化是解決本題的關鍵.考查學生的運算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.對于定義域為D的函數(shù)f(x)=k+$\sqrt{x+2}$,滿足存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b],求實數(shù)k的取值范圍$(-\frac{9}{4},-2]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[-1,2]上是減函數(shù),則(  )
A.2b+c有最大值9B.2b+c有最小值9C.2b+c有最大值-9D.2b+c有最小值-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知x=2+i,設M=1-${C}_{4}^{1}$x+${C}_{4}^{2}$x2-${C}_{4}^{3}$x3+${C}_{4}^{4}$x4,則M的值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=x2lnx在點(x0,f(x0))處的切線平行于x軸,則f(x0)等于(  )
A.-2eB.2eC.-$\frac{1}{2e}$D.$\frac{1}{2e}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知α,β是兩個不同的平面,m.n是兩條不同的直線,則下列命題中正確的是( 。
A.若m∥n,m?β,則n∥βB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥β,α⊥β,則m∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.一個幾何體的三視圖和尺寸如圖所示,則該幾何體的表面積為( 。
A.60B.84C.96D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為( 。
A.20B.61C.183D.548

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在三棱錐P-ABC中,F(xiàn),M分別是棱PB,AC的中點,E為PC上一動點.
(1)若AF∥平面MEB,試確定點E的位置,并證明你的結論.
(2)在滿足(1)的條件下,求三棱錐C-MEB與三棱錐C-PAB的體積比.

查看答案和解析>>

同步練習冊答案