已知A,B是△ABC的兩個內角,,(其中是互相垂直的單位向量),若
(1)試問tanA•tanB是否為定值,若是定值,請求出,否則請說明理由;
(2)求tanC的最大值,并判斷此時三角形的形狀.
【答案】分析:(1)先利用向量數(shù)量積的運算性質=,將轉化為三角方程,再利用二倍角公式和兩角和差的余弦公式將方程化簡即可求得tanA•tanB的值;
(2)求tanC的最大值即求tan(A+B)的最小值,利用兩角和的正切公式及(1)中結論,即可利用均值定理求得tan(A+B)的最小值,利用均值定理等號成立的條件,即可求得此時三角形的形狀
解答:解:(1)tanA•tanB為定值,證明如下:
=,得=
∴1+cos(A+B)+=
即2cos(A+B)=cos(A-B),即cosAcosB=3sinAsinB
∴tanAtanB=
(2)∵tanAtanB=>0,∴tanA>0,tanB>0
∴tan(A+B)==(tanA+tanB)≥×2=
∴tan(A+B)≥,即-tanC≥
∴tanC≤-
當tanC=-時,,即tanA=tanB=
∴A=B=30°
∴tanC的最大值為-,此時△ABC為等腰三角形
點評:本題主要考查了向量數(shù)量積的運算性質及其應用,三角變換公式在三角化簡和求值中的應用,利用均值定理求函數(shù)的最值的方法,屬中檔題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A、B是△ABC的兩個內角,且tanA、tanB是方程x2+mx+m+1=0的兩個實根,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B是△ABC的兩個內角,若p:sinA<sin(A+B),q:A∈(0,
π
2
),則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B是△ABC的兩個內角,
a
=
2
cos
A+B
2
i
+sin
A-B
2
j
,(其中
i
,
j
是互相垂直的單位向量),若|
a
|=
6
2

(1)試問tanA•tanB是否為定值,若是定值,請求出,否則請說明理由;
(2)求tanC的最大值,并判斷此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•棗莊二模)已知A,B是△ABC的兩個內角,向量
a
=(
2
cos
A+B
2
,sin
A-B
2
)
,且|
a
|=
6
2

(1)證明:tanAtanB為定值;
(2)若A=
π
6
,AB=2
,求邊BC上的高AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B是△ABC的兩個內角,
a
=
2
cos
A+B
2
i
+sin
A-B
2
j
,其中
i
、
j
為互相垂直的單位向量,若|
a
|=
6
2
.求tanA•tanB的值.

查看答案和解析>>

同步練習冊答案