在△ABC中,角A、B、C的對邊長分別是a、b、c,若bcosC+(2a+c)cosB=0,則內(nèi)角B的大小為
 
考點:正弦定理,三角函數(shù)中的恒等變換應(yīng)用
專題:計算題,三角函數(shù)的求值,解三角形
分析:運用正弦定理,將邊化為角,由兩角和的正弦公式和誘導(dǎo)公式,化簡整理,結(jié)合特殊角的三角函數(shù)值,即可得到B.
解答: 解:由正弦定理,bcosC+(2a+c)cosB=0,
即為sinBcosC+(2sinA+sinC)cosB=0,
即(sinBcosC+sinCcosB)=-2sinAcosB,
即sin(B+C)=-2sinAcosB,
即有sinA=-2sinAcosB,
則cosB=-
1
2

由于0<B<π,則B=
3

故答案為:
3
點評:本題考查正弦定理及運用,考查兩角和的正弦公式和誘導(dǎo)公式,考查特殊角的三角函數(shù)值,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸出結(jié)果是a=341,那么判斷框內(nèi)應(yīng)填的條件為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC.
(1)求證:AC⊥A1B;
(2)求三棱錐C1-ABA1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2
ln|x|
的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù),則loga2<0”的逆否命題是(  )
A、若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)不是減函數(shù)
B、若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)不是減函數(shù)
C、若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù)
D、若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和記為Sn,a1=1,an+1=4Sn+1(n∈N+).
(1)求a2,a3;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y是兩個具有線性相關(guān)關(guān)系的變量,現(xiàn)有這兩個變量的十個樣本點(x1,y1)(x2,y2),…,(x10,y10),同學(xué)甲利用最小二乘法得到回歸直線l1:y=bx+a,同學(xué)乙將十個樣本點中的兩個點連起來得到擬合直線l2:y=dx+c,則下列判斷一定正確的是( 。
A、
10
i=1
(yi-bxi-a)2
10
i=1
(yi-dxi-c)2
B、
10
i=1
(yi-bxi-a)2
10
i=1
(yi-dxi-c)2
C、
10
i=1
|yi-bxi-a|
10
i=1
|yi-dxi-c|
D、
10
i=1
|yi-bxi-a|
10
i=1
|yi-dxi-c|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時拋擲三枚均勻的硬幣,均為正面向上的概率為( 。
A、
1
8
B、
3
8
C、
5
8
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求此方程組的解:
1
1-x2
+
1
1-y2
=
35
12
x
1-x2
-
y
1-y2
=
7
12

查看答案和解析>>

同步練習(xí)冊答案