【題目】已知函數(shù)f(x)的定義域為[﹣1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:

x

﹣1

0

4

5

f(x)

1

2

2

1

(1)函數(shù)y=f(x)是周期函數(shù);
(2)函數(shù)f(x)在(0,2)上是減函數(shù);
(3)如果當(dāng)x∈[﹣1,t]時,f(x)的最大值是2,那么t的最大值為4;
(4)當(dāng)1<a<2時,函數(shù)y=f(x)﹣a有4個零點.
其中真命題的個數(shù)有( )

A.1個
B.2個
C.3個
D.4個

【答案】A
【解析】解:函數(shù)f(x)的定義域為[﹣1,5],部分對應(yīng)值如表,
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示:
由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系得,原函數(shù)的大致圖象如圖:
由圖得:∵函數(shù)的定義域為閉區(qū)間,而周期函數(shù)的定義域一定是無界的,
故①為假命題;
②為真命題.因為在[0,2]上導(dǎo)函數(shù)為負(fù),故原函數(shù)遞減;
由已知中y=f′(x)的圖象,及表中數(shù)據(jù)可得當(dāng)x=0或x=4時,
函數(shù)取最大值2,
若x∈[﹣1,t]時,f(x)的最大值是2,那么0≤t≤5,故t的最大值為5,即③錯誤;
∵函數(shù)f(x)在定義域為[﹣1,5]共有兩個單調(diào)增區(qū)間,兩個單調(diào)減區(qū)間,
故函數(shù)y=f(x)﹣a的零點個數(shù)可能為0、1、2、3、4個,即④錯誤,
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式|x+a|≤b的解集為[﹣6,2].
(1)求實數(shù)a,b的值;
(2)若實數(shù)m,n滿足|am+n|< ,|m﹣bn|< ,求證:|n|<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求證:平面PED⊥平面PAC;
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(xk)ex,

(1)f(x)的單調(diào)區(qū)間;

(2)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex﹣2x.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=f(2x)﹣4bf(x),當(dāng)x>0時,g(x)>0,求b的最大值;
(Ⅲ)已知1.4142< <1.4143,估計ln2的近似值(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】O為△ABC內(nèi)一點,且2 , =t ,若B,O,D三點共線,則t的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,該函數(shù)所表示的曲線上的一個最高點為由此最高點到相鄰的最低點間曲線與軸交于點.

(1)函數(shù)解析式;

(2)求函數(shù)的單調(diào)區(qū)間

(3)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為原點,Ox軸為極軸,單位長度不變,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:ρsin(θ+ )= ,曲線C的參數(shù)方程為:
(1)寫出直線l和曲線C的普通方程;
(2)若直線l和曲線C相交于A,B兩點,定點P(﹣1,2),求線段|AB|和|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的銳角三角形空地中, 欲建一個面積不小于300m2的內(nèi)接矩形花園(陰影部分), 則其邊長x(單位m)的取值范圍是 ( )

(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]

【答案】C

【解析】如圖ADE∽△ABC,設(shè)矩形的另一邊長為y,則,所以,又,所以,即,解得.

【考點定位】本題考查平面幾何知識和一元二次不等式的解法,對考生的閱讀理解能力、分析問題和解決問題的能力以及探究創(chuàng)新能力都有一定的要求.屬于難題.

型】單選題
結(jié)束】
10

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,若Sm1=-2,Sm=0,Sm1=3,則m=(  )

A. 5 B. 4 C. 3 D. 6

查看答案和解析>>

同步練習(xí)冊答案