已知為偶函數(shù),曲線過點(diǎn),.
(Ⅰ)求曲線有斜率為0的切線,求實(shí)數(shù)的取值范圍;
(Ⅱ)若當(dāng)時(shí)函數(shù)取得極值,確定的單調(diào)區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)已知函數(shù),.
(1)試判斷函數(shù)的單調(diào)性,并用定義加以證明;
(2)求函數(shù)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
若函數(shù)f(x)=在[1,+∞上為增函數(shù).
(Ⅰ)求正實(shí)數(shù)a的取值范圍.
(Ⅱ)若a=1,求征:(n∈N*且n ≥ 2 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)是定義在[-1,1]上的奇函數(shù). 當(dāng)a, b∈[-1,1],且a+b≠0時(shí),有
(1)判斷函數(shù)f(x)的的單調(diào)性,并給以證明;
(2)若f(1)=1,且f(x)≤m2-2bm+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com