10.函數(shù)$y=\sqrt{1-2x}$的反函數(shù)的值域是$(-∞,\frac{1}{2}]$.

分析 反函數(shù)的值域是原函數(shù)的定義域,即可得出.

解答 解:由函數(shù)$y=\sqrt{1-2x}$,可得1-2x≥0,解得x$≤\frac{1}{2}$,可得原函數(shù)的定義域:$(-∞,\frac{1}{2}]$.
則反函數(shù)的值域是$y=\sqrt{1-2x}$的定義域$(-∞,\frac{1}{2}]$.
故答案為:$(-∞,\frac{1}{2}]$.

點評 本題考查了函數(shù)的定義域、不等式的解法、互為反函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一扇形的圓心角為60°,所在圓的半徑為6,則它的面積是( 。
A.B.C.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2+$\frac{1}{a}-\frac{1}{{{a^2}x}}$(實數(shù)a≠0),
(1)若m<n<0,請判斷函數(shù)f(x)在區(qū)間[m,n]上的單調(diào)性并證明;
(2)若$\frac{8}{7}$≤m<n且a>0時,函數(shù)f(x)的定義域和值域都[m,n],求n-m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.把一個圓錐截成圓臺,已知圓臺的上、下底面半徑分別為1cm、4cm,母線長10cm.
求:(1)圓錐的母線長;(2)圓臺表面積;(3)圓臺體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.方程lg(x2-3)=lg(3x-5)的解是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,一個長為5、寬為3的矩形被平行于邊的兩條直線所分割,其中矩形的左上角是一個是一個邊長為x的正方形
(1)若圖中陰影部分的面積為S,試寫出S關(guān)于x的函數(shù)解析式,并標(biāo)明自變量x的取值范圍;
(2)若(1)中的函數(shù)解析式為S(x),求出S(x)的最小值,并指明S(x)取得最小值時對應(yīng)的自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若f(x)=|log2x|-m有兩個零點x1,x2(x1>x2),則${x_1}^2+4{x_2}^2$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-2ax+a(a為實常數(shù)).設(shè)$h(x)=\frac{f(x)}{x}$,證明:當(dāng)a<1時,h(x)在[1,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.己知函數(shù)f(x)=x3-3x,若過點A(1,m)可作曲線y=f(x)的三條切線,則實數(shù)m的取值范圍是( 。
A.-1<m<1B.-4<m<4C.-1<m<-2D.-3<m<-2

查看答案和解析>>

同步練習(xí)冊答案