【題目】已知點H(0,﹣8),點P在x軸上,動點F滿足PF⊥PH,且PF與y軸交于點Q,Q為線段PF的中點.
(1)求動點F的軌跡E的方程;
(2)點D是直線l:x﹣y﹣2=0上任意一點,過點D作E的兩條切線,切點分別為A、B,取線段AB的中點,連接DM交曲線E于點N,求證:直線AB過定點,并求出定點的坐標(biāo).

【答案】
(1)解:設(shè)F(x,y),∵Q是PF的中點,Q在y軸上,P在x軸上,

∴P(﹣x,0),又H(0,﹣8),∴kPF= ,kPH= ,

∵PF⊥PH,∴ ,即x2=4y.

∴動點F的軌跡E的方程x2=4y


(2)解:證明:設(shè)直線AB的方程為y=kx+b,

聯(lián)立方程組 ,消去y得:x2﹣4kx﹣4b=0,

設(shè)A(x1,y1),B(x2,y2),則 ,且△=16k2+16b.

以點A為切點的切線的斜率為kP= x1,其切線方程為y﹣y1= x1(x﹣x1),

即y= x1x﹣ x12

同理過點Q的切線的方程為y= x2x﹣ x22,

聯(lián)立方程組

即D(2k,﹣b),∵D在直線x﹣y﹣2=0上,

∴2k﹣(﹣b)﹣2=0,即b=2﹣2k,

所以直線AB的方程y=kx+2﹣2k,即y=k(x﹣2)+2,顯然該直線恒過定點(2,2).


【解析】(1)設(shè)F(x,y),用x,y表示出P點坐標(biāo),求出PF、PH的斜率,根據(jù)PF⊥PH列方程化簡即可;(2)設(shè)AB方程為y=kx+b,聯(lián)立方程組得出A,B坐標(biāo)的關(guān)系,利用導(dǎo)數(shù)的幾何意義得出切線方程,從而求得D點坐標(biāo),得出k,b的關(guān)系,即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級學(xué)生中隨機(jī)抽取100名學(xué)生,將他們期中考試的數(shù)學(xué)成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示).則分?jǐn)?shù)在[70,80)內(nèi)的人數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2lnx﹣ ﹣m,若關(guān)于x的方程f(f(x))=x恰有兩個不相等的實數(shù)根,則m的取值范圍是(
A.(2ln3﹣4,+∞)
B.(﹣∞,2ln3﹣4)
C.(﹣4,+∞)
D.(﹣∞,﹣4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示,M、N兩點之間的距離為13,且f(3)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)個單位長度后所得函數(shù)的圖象關(guān)于坐標(biāo)原點對稱,則t的最小值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn , 已知a2=7,a3為整數(shù),且Sn的最大值為S5
(1)求{an}的通項公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知美國蘋果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬美元,每生產(chǎn)1只還需另投入16美元.設(shè)蘋果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時,蘋果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是(  )

A. 2017年第一季度總量和增速由高到低排位均居同一位的省只有1個

B. 與去年同期相比,2017年第一季度五個省的總量均實現(xiàn)了增長

C. 去年同期河南省的總量不超過4000億元

D. 2017年第一季度增速由高到低排位第5的是浙江省

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線.

(1)求與圓相切且與直線垂直的直線方程;

(2)在直線為坐標(biāo)原點),存在定點(不同于點),滿足:對于圓上任一點都有為一常數(shù),試求所有滿足條件的點的坐標(biāo).

【答案】(1)(2)答案見解析.

【解析】試題分析:

(1)設(shè)所求直線方程為,利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線方程為

(2)方法1:假設(shè)存在這樣的點由題意可得,,然后證明為常數(shù)為即可.

方法2:假設(shè)存在這樣的點,使得為常數(shù),則,據(jù)此得到關(guān)于的方程組,求解方程組可得存在點對于圓上任一點,都有為常數(shù).

試題解析:

(1)設(shè)所求直線方程為,即,

∵直線與圓相切,∴,得

∴所求直線方程為

(2)方法1:假設(shè)存在這樣的點,

當(dāng)為圓軸左交點時,;

當(dāng)為圓軸右交點時,,

依題意,,解得,(舍去),或.

下面證明點對于圓上任一點,都有為一常數(shù).

設(shè),則

,

從而為常數(shù).

方法2:假設(shè)存在這樣的點,使得為常數(shù),則

,將代入得,

,即

恒成立,

,解得(舍去),

所以存在點對于圓上任一點,都有為常數(shù).

點睛:求定值問題常見的方法有兩種:

(1)從特殊入手,求出定值,再證明這個值與變量無關(guān).

(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.

型】解答
結(jié)束】
22

【題目】已知函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).

(1)當(dāng)的最大值,并推斷方程是否有實數(shù)解

(2)若在區(qū)間上的最大值為-3,的值.

查看答案和解析>>

同步練習(xí)冊答案