【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù).

1)求證:函數(shù)上是增函數(shù);

2)不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

【答案】1)證明見解析(2

【解析】

1)先由函數(shù)為奇函數(shù),可得,再利用定義法證明函數(shù)的單調(diào)性即可;

2)結(jié)合函數(shù)的性質(zhì)可將問題轉(zhuǎn)化為上恒成立,再利用二次不等式恒成立問題求解即可.

解:(1函數(shù)是定義域?yàn)?/span>的奇函數(shù),

,

等式對(duì)于任意的均恒成立,得,

,

設(shè)為任意兩個(gè)實(shí)數(shù),且,

因?yàn)?/span>,則,

所以,即,

因此函數(shù)上是增函數(shù);

2)由不等式對(duì)任意的恒成立,

.由(1)知,函數(shù)上是增函數(shù),

,即上恒成立.,,則上恒成立.

當(dāng)時(shí),即,可知,即

所以

當(dāng)時(shí),即,可知.

,所以;

當(dāng)時(shí),即,可知,即

所以,

綜上,當(dāng)時(shí),不等式對(duì)任意的恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的直角坐標(biāo)方程及曲線的普通方程;

2)已知點(diǎn),直線l的參數(shù)方程為t為參數(shù)),設(shè)直線l與曲線交于MN兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點(diǎn).

(1)求證:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以,,分組的頻率分布直方圖如圖所示.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下表:

1,23,

45,6,7,8,

910,11,1213,14,15

1617,1819,2021,22,23,24,

……

問:(1)此表第行的第一個(gè)數(shù)與最后一個(gè)數(shù)分別是多少?

2)此表第行的各個(gè)數(shù)之和是多少?

32019是第幾行的第幾個(gè)數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在實(shí)數(shù),使得等式對(duì)于定義域內(nèi)的任意實(shí)數(shù)均成立,則稱函數(shù)為“可平衡”函數(shù),有序數(shù)對(duì)稱為函數(shù)的“平衡”數(shù)對(duì).

(1)若,判斷是否為“可平衡”函數(shù),并說明理由;

(2)若,均為的“可平衡”數(shù)對(duì),當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓

(1)若直線過點(diǎn)且被圓截得的弦長為2,求直線的方程;

(2)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為為坐標(biāo)原點(diǎn),滿足,求點(diǎn)的軌跡方程及的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, 底面, 是棱的中點(diǎn),

.

(1)求證: 平面;

(2)如果是棱上一點(diǎn),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:方程表示焦點(diǎn)在y軸上的橢圓,其離心率的范圍是

命題q:某人射擊,每槍中靶的概率為,他連續(xù)射擊兩槍至少有一槍中靶的概率超過,若復(fù)合命題:非p為真,p或q為真,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案