直線AB過拋物線x2=2pyp>0)的焦點(diǎn)F,并與其相交于A、B兩點(diǎn),Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn),O是坐標(biāo)原點(diǎn).

   (Ⅰ)求的取值范圍;

   (Ⅱ)過AB兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn).

        求證:;

   (Ⅲ)若p是不為1的正整數(shù),當(dāng),△ABN的面積的取值范圍為[5,20]時(shí),求該拋物線的方程.

(Ⅰ)·的取值范圍是.   

   (Ⅱ)證明見解析

   (Ⅲ)拋物線的方程:x2=4y.    


解析:

(Ⅰ)由條件得M(0,-),F(0,).設(shè)直線AB的方程為

         y=kx+A(,),B(,)

         則,Q().   …………………………2分

         由.

         ∴由韋達(dá)定理得+=2pk,·=-    …………………………3分

         從而有= +=k(+)+p=2pk÷p.

         ∴·的取值范圍是.      …………………………4分

   (Ⅱ)拋物線方程可化為,求導(dǎo)得.

         ∴       =y     .

         ∴切線NA的方程為:y-.

         切線NB的方程為:  …………………………6分

         由解得N()

         從而可知N點(diǎn)Q點(diǎn)的橫坐標(biāo)相同但縱坐標(biāo)不同.

         ∴NQOF.即    …………………………7分

         又由(Ⅰ)知+=2pk,·=-p

         ∴N(pk,-).      …………………………8分

         而M(0,-)  ∴

         又. ∴.       …………………………9分

   (Ⅲ)由.又根據(jù)(Ⅰ)知

         ∴4p=pk,而p>0,∴k=4,k=±2.   …………………………10分

         由于=(-pk,p),  

         ∴

         從而.         …………………………11分

         又||=,||=

         ∴.

         而的取值范圍是[5,20].

         ∴5≤5p2≤20,1≤p2≤4.   …………………………13分

         而p>0,∴1≤p≤2.

         又p是不為1的正整數(shù).

         ∴p=2.

         故拋物線的方程:x2=4y.      …………………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線AB過拋物線x2=2py(p>0)的焦點(diǎn)F,并與其相交于A、B兩點(diǎn),Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)求
MA
MB
的取值范圍;
(Ⅱ)過A、B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn),求證:
MN
OF
=0,
NQ
OF

(Ⅲ)若p是不為1的正整數(shù),當(dāng)
MA
MB
=4P2,△ABN的面積的取值范圍為[5
5
,20
5
]時(shí),求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線AB過拋物線x2=2pyp>0)的焦點(diǎn)F,并與其相交于AB兩點(diǎn),Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn),O是坐標(biāo)原點(diǎn).

   (Ⅰ)求的取值范圍;

   (Ⅱ)過A、B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn).

        求證:;

   (Ⅲ)若p是不為1的正整數(shù),當(dāng),△ABN的面積的取值范圍為[5,20]時(shí),求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線AB過拋物線x2=2py(p>0)的焦點(diǎn)9,并與其相交于A、B兩點(diǎn),Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn),O是坐標(biāo)原點(diǎn).

(1)求證的取值范圍;

(2)過A、B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn),

求證:

(3)設(shè)直線AB與x軸、y軸的兩個(gè)交點(diǎn)分別為K和L,當(dāng)=4p2,△ABN的面積的取值范圍限定為[]時(shí),求動(dòng)線段KL的軌跡所形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬試卷08(理科)(解析版) 題型:解答題

直線AB過拋物線x2=2py(p>0)的焦點(diǎn)F,并與其相交于A、B兩點(diǎn),Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)求的取值范圍;
(Ⅱ)過A、B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn),求證:=0,
(Ⅲ)若p是不為1的正整數(shù),當(dāng)=4P2,△ABN的面積的取值范圍為[5,20]時(shí),求該拋物線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案