【題目】選修4-5:不等式選講

已知.

(Ⅰ)解不等式

(Ⅱ)若關(guān)于的不等式對(duì)任意的恒成立,求的取值范圍.

【答案】(1);(2).

【解析】(1)分三種情況去掉絕對(duì)值解不等式即可;(2)若關(guān)于x的不等式 對(duì)于任意的 恒成立,故 的最小值大于 .而由絕對(duì)值的意義可得的最小值為3,可得 ,由此計(jì)算得出a的范圍.

試題解析:(1)當(dāng)時(shí), 解得

當(dāng)時(shí), 不成立

當(dāng)時(shí), 解得

綜上有的解集是

(2)因?yàn)?/span> ,所以的最小值為3

要使得關(guān)于的不等式對(duì)任意的恒成立,只需

解得,故的取值范圍是.

點(diǎn)晴:本題考查的是含絕對(duì)值不等式的解法和絕對(duì)值三角不等式求最值.第一問(wèn)中根據(jù)絕對(duì)值的零點(diǎn),分三種情況去掉絕對(duì)值解不等式即可;第二問(wèn)中把不等式恒成立問(wèn)題,轉(zhuǎn)化為 的最小值大于 .而由絕對(duì)值的意義可得的最小值為3,可得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)常數(shù).

()設(shè),當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

()當(dāng)時(shí),直線、與函數(shù)的圖象一共有四個(gè)不同的交點(diǎn),且以此四點(diǎn)為頂點(diǎn)的四邊形恰為平行四邊形.

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=2 時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:

廣告費(fèi)用x(萬(wàn)元)

4

2

3

5

銷售額y(萬(wàn)元)

49

26

39

54

根據(jù)上表可得回歸方程 = x+ 中的 為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為(
A.63.6萬(wàn)元
B.67.7萬(wàn)元
C.65.5萬(wàn)元
D.72.0萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)的圖象,給出下列命題:

是函數(shù)的極值點(diǎn)

②1是函數(shù)的極小值點(diǎn)

處切線的斜率大于零

在區(qū)間上單調(diào)遞減

則正確命題的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的焦點(diǎn)在軸上,橢圓的左頂點(diǎn)為,斜率為的直線交橢圓 兩點(diǎn),點(diǎn)在橢圓上, ,直線軸于點(diǎn).

(Ⅰ)當(dāng)點(diǎn)為橢圓的上頂點(diǎn), 的面積為時(shí),求橢圓的離心率;

(Ⅱ)當(dāng), 時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的公差d>0,設(shè){an}的前n項(xiàng)和為Sn , a1=1,S2S3=36.
(1)求d及Sn;
(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),將上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的倍后得到曲線.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線.

(1)試寫出曲線的極坐標(biāo)方程與曲線的參數(shù)方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最小,并求此最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案