(本題滿分12分)本題共2個(gè)小題,第1小題6分,第2小題6分.
已知是復(fù)數(shù),為實(shí)數(shù)(虛數(shù)單位),且
(1)求復(fù)數(shù)
(2)若,求實(shí)數(shù)的取值范圍.


(1)由是實(shí)數(shù),可設(shè)= a,
,                                  ………………3分
所以,又,可得
,所以.                ………………6分
(2)由,可得,
,∴              ………………9分              
,解得,                                        
所以實(shí)數(shù)m的取值范圍是.            ………………12分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z=(m2-5m+6)+(m2-3m)
(1)實(shí)數(shù)?(2)虛數(shù)?(3)純虛數(shù)?(4)表示復(fù)數(shù)z的點(diǎn)在第三象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)虛數(shù)滿足為實(shí)常數(shù),,為實(shí)數(shù)).
(1)求的值;
(2)當(dāng),求所有虛數(shù)的實(shí)部和;
(3)設(shè)虛數(shù)對(duì)應(yīng)的向量為為坐標(biāo)原點(diǎn)),,如,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知復(fù)數(shù)Z=" a" + b i, ( a, b∈R)且a + b =" 25," (3 + 4i ) Z 是純虛數(shù)。
求Z的共軛復(fù)數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

實(shí)數(shù)m取什么值時(shí),復(fù)平面內(nèi)表示復(fù)數(shù)的點(diǎn)
(1)      位于第四象限?(2)位于第一、三象限?(3)位于直線上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)已知R,且,是否存在虛數(shù)同時(shí)滿足:
;②
若存在,請(qǐng)求出復(fù)數(shù)z;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

定義運(yùn)算,若函數(shù)上單調(diào)遞減,則實(shí)數(shù)的取值范圍是(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題15分)
設(shè)是虛數(shù),是實(shí)數(shù),且。
(1)求的值及的實(shí)部的取值范圍;
(2)設(shè),求證為純虛數(shù);
(3)求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案