【題目】已知數(shù)列{an}的前n項和Sn滿足2Sn=3an﹣1,其中n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)anbn= ,求數(shù)列{bn}的前n項和為Tn

【答案】解:( I)∵ ,①
當(dāng)n=1時,a1= a1 ,∴a1=1,
當(dāng)n≥2時,∵Sn1= an1 ,②
①﹣②得:
an= an an1
即:an=3an1(n≥2),
又∵a1=1,a2=3,
對n∈N*都成立,
故{an}是等比數(shù)列,

( II)∵
=3( ),
,
,
即Tn=
【解析】( I)分n=1與n≥2討論,從而判斷出{an}是等比數(shù)列,從而求通項公式;( II)化簡可得 =3( ),利用裂項求和法求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高

氣溫

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學(xué)期望達到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標(biāo)系的坐標(biāo)平面內(nèi),若函數(shù)的圖象與軸圍成一個封閉區(qū)域,將區(qū)域沿軸的正方向上移4個單位,得到幾何體如圖一.現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過點,且與圓關(guān)于直線對稱.

(1)求兩圓的方程;

(2)若直線與直線平行,且截距為7,在上取一橫坐標(biāo)為的點,過點作圓的切線,切點為,設(shè)中點為.

(ⅰ)若,求的值;

(ⅱ)是否存在點,使得?若存在,求點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是直線x=4上一動點,以P為圓心的圓Γ經(jīng)定點B(1,0),直線l是圓Γ在點B處的切線,過A(﹣1,0)作圓Γ的兩條切線分別與l交于E,F(xiàn)兩點.

(1)求證:|EA|+|EB|為定值;

(2)設(shè)直線l交直線x=4于點Q,證明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為的正方體中,,分別是的中點.

)求異面直線所成角的余弦值.

)在棱上是否存在一點,使得二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知向量 =(2sinA,cos(A﹣B)), =(sinB,﹣1),且 =
(Ⅰ)求角C的大。
(Ⅱ)若 ,求b﹣a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校對高二600名學(xué)生進行了一次知識測試,并從中抽取了部分學(xué)生的成績(滿分100)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

(1)填寫頻率分布表中的空格,補全頻率分布直方圖,并標(biāo)出每個小矩形對應(yīng)的縱軸數(shù)據(jù);

分組

頻數(shù)

頻率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合計

1.00

如果用分層抽樣的方法從樣本分?jǐn)?shù)在[60,70)[80,90)的人中共抽取6,再從6人中選2,2人分?jǐn)?shù)都在[80,90)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=3sinx+2cosx+1.若實數(shù)a,b,c使得af(x)+bf(x﹣c)=1對任意實數(shù)x恒成立,則 的值為(
A.﹣1
B.
C.1
D.

查看答案和解析>>

同步練習(xí)冊答案