3.在△ABC中,設(shè)$\overrightarrow{CB}$=$\vec a$,$\overrightarrow{AC}$=$\vec b$,且|$\vec a$|=2,|$\vec b$|=1,$\vec a$•$\vec b$=-1,則|$\overrightarrow{AB}$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 根據(jù)向量的數(shù)量積的運(yùn)算,先求出$\overrightarrow{CB}$與$\overrightarrow{AC}$的夾角為θ,再根據(jù)余弦定理即可求出答案.

解答 解:設(shè)$\overrightarrow{CB}$=$\vec a$,$\overrightarrow{AC}$=$\vec b$,設(shè)$\overrightarrow{CB}$與$\overrightarrow{AC}$的夾角為θ,
∵|$\vec a$|=2,|$\vec b$|=1,$\vec a$•$\vec b$=-1,
∴$\vec a$•$\vec b$=|$\vec a$|•|$\vec b$|cosθ=2×1×cosθ=-1,
∴cosθ=$\frac{1}{2}$,
∴θ=120°,
∴∠ACB=60°,
由余弦定理可得|$\overrightarrow{AB}$|2=|$\vec a$|2+|$\vec b$|2-2|$\vec a$|•|$\vec b$|cos60°=4+1-2×2×1×$\frac{1}{2}$=3,
∴|$\overrightarrow{AB}$|=$\sqrt{3}$,
故選:C.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積的運(yùn)算和余弦定理,考查運(yùn)算能力,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x∈Z|-$\frac{3}{2}$<x<3},B={0,1,2,3,4},則集合A∩B的子集個(gè)數(shù)為( 。
A.16B.8C.7D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時(shí),求cos2x-sin2x的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,已知f($\frac{α}{2}$)=$\frac{3}{4}$,α∈($\frac{π}{2}$,π),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,|${\overrightarrow{AB}$+$\overrightarrow{AC}}$|=|${\overrightarrow{AB}$-$\overrightarrow{AC}}$|,AB=4,AC=2,E,F(xiàn)為線段BC的三等分點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$=( 。
A.$\frac{10}{9}$B.4C.$\frac{40}{9}$D.$\frac{56}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.{an}為等差數(shù)列,前n項(xiàng)和為Sn,若S11=66,則4a3+3a6+2a12=( 。
A.27B.54C.99D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=$\frac{1}{3}$x3+ax2+bx+c(a,b,c∈R)的導(dǎo)函數(shù)的圖象如圖所示:
(1)求a,b的值并寫出f(x)的單調(diào)區(qū)間;
(2)函數(shù)y=f(x)有三個(gè)零點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=sinx+2{cos^2}\frac{x}{2}-1$,$g(x)=2\sqrt{2}sinxcosx$,下列結(jié)論正確的是(  )
A.函數(shù)f(x)與g(x)的最大值不同
B.函數(shù)f(x)與g(x)在$(\frac{3π}{4},\;\;\frac{5π}{4})$上都為增函數(shù)
C.函數(shù)f(x)與g(x)的圖象的對(duì)稱軸相同
D.將函數(shù)f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$,縱坐標(biāo)不變,再通過平移能得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{y=2x}\\{0≤x≤3}\end{array}\right.$,則目標(biāo)函數(shù)z=y-x2的最大值為( 。
A.0B.$\frac{5}{9}$C.1D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案