已知函數(shù)().

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,取得極值.

① 若,求函數(shù)上的最小值;

② 求證:對任意,都有.

 

【答案】

(1)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為 ;(2)①②詳見解析.

【解析】

試題分析:(1)求導(dǎo)解,  解 ;

(2)①當(dāng)時,取得極值, 所以解得,對求導(dǎo),判斷在,遞增,在遞減,分類討論,求出最小值;②通過求導(dǎo),求出,將恒成立問題轉(zhuǎn)化為最值問題,對任意,都有.

試題解析:(1)  

當(dāng)時,                  

,  解  

所以單調(diào)增區(qū)間為,單調(diào)減區(qū)間為  

(2)①當(dāng)時,取得極值, 所以 

解得(經(jīng)檢驗(yàn)符合題意)   

  

+

0

-

0

+

 

 

所以函數(shù),遞增,在遞減  

當(dāng)時,單調(diào)遞減, 

  

當(dāng)時       

單調(diào)遞減,在單調(diào)遞增,  

當(dāng)時,單調(diào)遞增,  

綜上,上的最小值

  

②令 得(舍)  

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102523442043409355/SYS201310252344534495580855_DA.files/image057.png">  所以  

所以,對任意,都有.

考點(diǎn):求導(dǎo),函數(shù)單調(diào)性,函數(shù)最值,恒成立問題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時有極大值6,在x=1時有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
,
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=asinx+bcosx+c的圖象上有一個最低點(diǎn)(
11π
6
,-1)

(Ⅰ)如果x=0時,y=-
3
2
,求a,b,c.
(Ⅱ)如果將圖象上每個點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的
3
π
,然后將所得圖象向左平移一個單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個公差為3的等差數(shù)列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
(Ⅰ)用xn表示xn+1;
(Ⅱ)若x1=4,記an=lg
xn+2xn-2
,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步練習(xí)冊答案