【題目】現(xiàn)有個小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球誰贏. 如果甲先抓,那么下列推斷正確的是( )
A. 若=4,則甲有必贏的策略 B. 若=6,則乙有必贏的策略
C. 若=9,則甲有必贏的策略 D. 若=11,則乙有必贏的策略
【答案】C
【解析】分析:如果甲先抓,若n=9,則甲有必贏的策略.必贏的策略為:甲先抓1球,當(dāng)乙抓1球時,甲再抓3球;當(dāng)乙抓2球時,甲再抓2球;當(dāng)乙抓3球時,甲再抓1球;這時還有4個小球,輪到乙抓,按規(guī)則,乙最少抓1個球,最多抓3個球,無論如何抓,都會至少剩一個球,至多剩3個球;甲再抓走所有剩下的球,從而甲勝.
詳解:現(xiàn)有n個小球,甲、乙兩位同學(xué)輪流且不放回抓球,
每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球贏。
如果甲先抓,若n=9,則甲有必贏的策略。
必贏的策略為:
①甲先抓1球,
②當(dāng)乙抓1球時,甲再抓3球;當(dāng)乙抓2球時,甲再抓2球;當(dāng)乙抓3球時,甲再抓1球;
③這時還有4個小球,輪到乙抓,按規(guī)則,乙最少抓1個球,最多抓3個球,
無論如何抓,都會至少剩一個球,至多剩3個球;
④甲再抓走所有剩下的球,從而甲勝.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《城市規(guī)劃管理意見》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設(shè)封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開”,這個消息在網(wǎng)上一石激起千層浪,各種說法不一而足.某網(wǎng)站為了解居民對“開放小區(qū)”認(rèn)同與否,從歲的人群中隨機抽取了人進(jìn)行問卷調(diào)查,并且做出了各個年齡段的頻率分布直方圖(部分)如圖所示,同時對人對這“開放小區(qū)”認(rèn)同情況進(jìn)行統(tǒng)計得到下表:
(Ⅰ)完成所給的頻率分布直方圖,并求的值;
(Ⅱ)如果從兩個年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽取6人參與座談會,然后從這6人中隨機抽取2人作進(jìn)一步調(diào)查,求這2人的年齡都在內(nèi)的概率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足 , .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時,試比較 和ex﹣1+a哪個更靠近lnx,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下表為“五點法”繪制函數(shù)圖象時的五個關(guān)鍵點的坐標(biāo)(其中).
0 | 2 | 0 | 0 |
(Ⅰ) 請寫出函數(shù)的最小正周期和解析式;
(Ⅱ) 求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ) 求函數(shù)在區(qū)間上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) 是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) (且)是定義域為R的奇函數(shù).
(Ⅰ)求t的值;
(Ⅱ)若函數(shù)的圖象過點,是否存在正數(shù)m,使函數(shù)在上的最大值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有人,其余每天使用微信在一小時以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.
(Ⅰ)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;
青年人 | 中年人 | 合計 | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
合計 |
(Ⅱ)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?
(Ⅲ)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取人,從這人中任選人,求事件 “選出的人均是青年人”的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點,連接AC、AE分別交⊙O于D、G兩點,連接DG交CB于點F. (Ⅰ)求證:C、D、G、E四點共圓.
(Ⅱ)若F為EB的三等分點且靠近E,EG=1,GA=3,求線段CE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是( )
(1)cosα≠0是 的充分必要條件
(2)f(x)=|sinx|+|cosx|,則f(x)最小正周期是π
(3)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變
(4)設(shè)隨機變量ζ服從正態(tài)分布N(0,1),若P(ζ>1)=p,則 .
A.4
B.3
C.2
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com