設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切n∈N*,點(diǎn)(n,
Sn
n
)都在函數(shù)f(x)=x+
an
2x
的圖象上.
(1)求a1,a2,a3的值,猜想an的表達(dá)式,并證明你的猜想.
(2)設(shè)An為數(shù)列{
an-1
an
}的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式An
an+1
<f(a)-
an+3
2a
對(duì)一切n∈N*都成立?若存在,求出a的取值范圍,若不存在,說(shuō)明理由.
分析:(1)由題設(shè)知
Sn
n
=n+
an
2n
,Sn=n2+
1
2
an,令n=1,2,3,分別求出a1,a2,a3,然后仔細(xì)觀察,總結(jié)規(guī)律,猜想:an=2n(n∈N*),再用用數(shù)字歸納法證明.
(2)由
an-1
an
=1-
1
an
,知An=(1-
1
a1
)(1-
1
a2
)(1-
1
an
),An
an+1
=(1-
1
a1
)(1-
1
a2
)(1-
1
an
2n+1
,又f(a)-
an+3
2a
=a+
an
2a
-
an+3
2a
=a-
3
2a
,故An
an+1
<f(a)-
an+3
2a
對(duì)一切n∈N*都成立,由此能夠推導(dǎo)出使得所給不等式對(duì)一切n∈N*都成立的實(shí)數(shù)a存在,并且能求出a的取值范圍.
解答:解:(1)∵點(diǎn)(n,
Sn
n
)都在函數(shù)f(x)=x+
an
2x
的圖象上,故
Sn
n
=n+
an
2n

∴Sn=n2+
1
2
an,令n=1得a1=1+
1
2
a1,∴a1=2
令n=2得a1+a2=4+
1
2
a2,∴a2=4
令n=3得a1+a2+a3=9+
1
2
a3,∴a3=6
由此猜想:an=2n(n∈N*),(2分)
下面用數(shù)字歸納法證明:
①當(dāng)n=1時(shí),由上面的求解知,猜想成立.(3分)
②假設(shè)n=k時(shí)猜想成立,即ak=2k成立,
那么,當(dāng)n=k+1時(shí),由條件知,Sk=k2+
1
2
ak,Sk+1=(k+1)2+
1
2
ak+1,
兩式相減,得ak+1=2k+1+
1
2
ak+1-
1
2
ak,
∴ak+1=4k+2-ak=4k+2-2k=2(k+1)
即當(dāng)n=k+1時(shí),猜想成立.
根據(jù)①、②知,對(duì)一切n∈N*,an=2n成立.(6分)
(2)∵
an-1
an
=1-
1
an
,故An=(1-
1
a1
)(1-
1
a2
)(1-
1
an
),
∴An
an+1
=(1-
1
a1
)(1-
1
a2
)(1-
1
an
2n+1

又f(a)-
an+3
2a
=a+
an
2a
-
an+3
2a
=a-
3
2a

故An
an+1
<f(a)-
an+3
2a
對(duì)一切n∈N*都成立,就是
(1-
1
a1
)(1-
1
a2
)(1-
1
an
)•
2n+1
<a-
3
2a
對(duì)一切n∈N*都成立.(8分)
設(shè)g(n)=(1-
1
a1
)(1-
1
a2
)(1-
1
an
2n+1
,則只需g(n)max<a-
3
2a
即可.(9分)
由于
g(n+1)
g(n)
=(1-
1
an+1
)•
2n+3
2n+1
=
2n+1
2n+2
2n+3
2n+1

=
4n2+8n+3
4n2+8n+4
<1
∴g(n+1)<g(n),故g(n)是單調(diào)遞減,
于是g(n)max=g(1)=
3
2
,(12分)
3
2
<a-
3
2a
(a-
3
)(2a+
3
)
a
>0解得-
3
2
<a<0或a>
3

綜上所述,使得所給不等式對(duì)一切n∈N*都成立的實(shí)數(shù)a存在,且a的取值范圍為(-
3
2
,0)∪(
3
,+∞).(14分)
點(diǎn)評(píng):本題考是數(shù)列的性質(zhì)和綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意不等式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過(guò)程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案