如圖,B為△ACD所在平面外一點,M、N、G分別為△ABC、△ABD、△BCD的重心,

(1)求證:平面MNG∥平面ACD;

(2)求

答案:略
解析:

(1)證明:連結BM、BNBG并延長交AC、AD、CD分別于P、F、H

M、NG分別為△ABC、△ABD、△BCD的重心,

則有

連結PF、FH、PH,有MNPF

平面ACD,平面ACD,

MN∥平面ACD

同理MG∥平面ACD,MGMN=M,

∴平面MNG∥平面ACD

(2)解:由(1)可知:,∴

,

同理

∴△MNG∽△ACD,其相似比為13


提示:

(1)要證明平面MNG∥平面ACD,由于M、N、G分別為△ABC、△ABD、△BCD的重心,因此可想到利用重心的性質找出與平面平行的直線.

(2)因為△MNG所在的平面與△ACD所在的平面相互平行,因此,求兩三角形的面積之比,實則求這兩個三角形的對應邊之比.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式a≥|x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)

C.(坐標系與參數(shù)方程選做題)直角坐標系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標系,設點A,B分別在曲線C1
x=3+cos θ
y=4+sin θ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對任意x∈R恒成立,則a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)
C.(坐標系與參數(shù)方程選做題)直角坐標系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標系,設點A,B分別在曲線C1
x=3+cosθ
y=sinθ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

如圖所示,B為△ACD所在平面處一點,M、N、G分別為△ABC、△ABD、△BCD的重心,(1)求證:平面MNG∥∶平面ACD;

(2)求

查看答案和解析>>

科目:高中數(shù)學 來源:2011年陜西省高考數(shù)學試卷(文科)(解析版) 題型:解答題

(請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式|x+1|+|x-2|≥a對任意x∈R恒成立,則a的取值范圍是   
B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=   

C.(坐標系與參數(shù)方程選做題)直角坐標系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標系,設點A,B分別在曲線C1 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年陜西省高考數(shù)學試卷(理科)(解析版) 題型:解答題

(請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式a≥|x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是   
B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=   


C.(坐標系與參數(shù)方程選做題)直角坐標系xoy中,以原點為極點,x軸的正半軸為極軸建極坐標系,設點A,B分別在曲線C1 (θ為參數(shù))和曲線C1:p=1上,則|AB|的最小值為   

查看答案和解析>>

同步練習冊答案