精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,A、B是長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足MB⊥AB,聯(lián)結(jié)AM,交橢圓于點(diǎn)P.
(1)當(dāng)a=2,b=
2
時(shí),設(shè)M(2,2),求
OP
OM
的值;
(2)若
OP
OM
為常數(shù),探究a、b滿(mǎn)足的條件?并說(shuō)明理由;
(3)直接寫(xiě)出
OP
OM
為常數(shù)的一個(gè)不同于(2)結(jié)論類(lèi)型的幾何條件.
分析:(1)利用點(diǎn)斜式可得AM的方程,與橢圓的方程聯(lián)立可得點(diǎn)P,利用數(shù)量積可得
OP
OM
;
(2)設(shè)P(x0,y0),M(a,t)(t≠0),利用A、P、M三點(diǎn)共線(xiàn),可得
y0
x0+a
=
t
2a
,即t=
2ay0
x0+a
.利用
x02
a2
+
y02
b2
=1
,可得y02=
b2(a-x0)(a+x0)
a2
.于是
OP
OM
=2b2+
a2-2b2
a
x0
.令a2-2b2=0即可.
(3)利用(2)中的:a2=2b2即可給出:“設(shè)F1為橢圓的焦點(diǎn),C為短軸的頂點(diǎn),當(dāng)△COF1為等腰三角形時(shí),
OP
OM
為常數(shù)2b2或a2.”或給出“當(dāng)PB⊥OM時(shí),
OP
OM
為常數(shù)2b2或a2.”
解答:解 (1)直線(xiàn)AM:y=
1
2
(x+2)
,
與橢圓的方程聯(lián)立
y=
1
2
(x+2)
x2
4
+
y2
2
=1
,解得P(
2
3
,
4
3
)

OP
OM
=(
2
3
,
4
3
)•(2,2)=4
.     
(2)設(shè)P(x0,y0),M(a,t)(t≠0),
∵A、P、M三點(diǎn)共線(xiàn),于是
y0
x0+a
=
t
2a
,即t=
2ay0
x0+a
.   
x02
a2
+
y02
b2
=1
,即y02=
b2(a-x0)(a+x0)
a2
.        
OP
OM
=ax0+ty0=ax0+
2ay02
x0+a
=ax0+
2b2(a-x0)
a
=2b2+
a2-2b2
a
x0

∴當(dāng)a2-2b2=0時(shí),
OP
OM
為常數(shù)2b2. 
(3)給出“設(shè)F1為橢圓的焦點(diǎn),C為短軸的頂點(diǎn),當(dāng)△COF1為等腰三角形時(shí),
OP
OM
為常數(shù)2b2或a2.”
或給出“當(dāng)PB⊥OM時(shí),
OP
OM
為常數(shù)2b2或a2.”
點(diǎn)評(píng):本題考查了直線(xiàn)與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立、數(shù)量積運(yùn)算、三點(diǎn)共線(xiàn)問(wèn)題與直線(xiàn)斜率的關(guān)系、探究性問(wèn)題等基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱(chēng)△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1
x2
4
+y2=1和C2
x2
16
+
y2
4
=1,判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請(qǐng)說(shuō)明理由;
(2)已知直線(xiàn)l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線(xiàn)l對(duì)稱(chēng),若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
3
2
,過(guò)橢圓C上一點(diǎn)P(2,1)作傾斜角互補(bǔ)的兩條直線(xiàn),分別與橢圓交于點(diǎn)A、B,直線(xiàn)AB與x軸交于點(diǎn)M,與y軸負(fù)半軸交于點(diǎn)N.
(Ⅰ)求橢圓C的方程:
(Ⅱ)若S△PMN=
3
2
,求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C:
x2
36
+
y2
20
=1的左頂點(diǎn),右焦點(diǎn)分別為A,F(xiàn),右準(zhǔn)線(xiàn)為l,N為l上一點(diǎn),且在x軸上方,AN與橢圓交于點(diǎn)M.
(1)若AM=MN,求證:AM⊥MF;
(2)過(guò)A,F(xiàn),N三點(diǎn)的圓與y軸交于P,Q兩點(diǎn),求PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求橢圓C的方程;
(2)求
TM
TN
的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線(xiàn)MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR|•|OS|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點(diǎn),右焦點(diǎn)分別為A、F,右準(zhǔn)線(xiàn)為m.圓D:x2+y2+x-3y-2=0.
(1)若圓D過(guò)A、F兩點(diǎn),求橢圓C的方程;
(2)若直線(xiàn)m上不存在點(diǎn)Q,使△AFQ為等腰三角形,求橢圓離心率的取值范圍.
(3)在(1)的條件下,若直線(xiàn)m與x軸的交點(diǎn)為K,將直線(xiàn)l繞K順時(shí)針旋轉(zhuǎn)
π
4
得直線(xiàn)l,動(dòng)點(diǎn)P在直線(xiàn)l上,過(guò)P作圓D的兩條切線(xiàn),切點(diǎn)分別為M、N,求弦長(zhǎng)MN的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案