5、已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是( 。
分析:根據(jù)m,n為兩條不同的直線,α,β為兩個不同的平面,可得該直線與直線可以平行,相交或異面,平面與平面平行或相交,把平面和直線放在長方體中,逐個排除易尋到答案.
解答:解:在長方體ABCD-A1B1C1D1中,
A、若平面AC是平面α,平面BC1是平面β,
直線AD是直線m,點E,F(xiàn)分別是AB,CD的中點,則EF∥AD,EF是直線n,
顯然滿足α∥β,m?α,n?β,但是m與n異面;
B、若平面AC是平面α,平面A1C1是平面β,
直線AD是直線m,A1B1是直線n,
顯然滿足m?α,n?α,m∥β,n∥β,但是α與β相交;
C、若平面AC是平面α,直線AD是直線n,AA1是直線m,
顯然滿足m⊥α,m⊥n,但是n∈α;
故選D.
點評:此題是個基礎題.考查直線與平面的位置關系,屬于探究性的題目,要求學生對基礎知識掌握必須扎實并能靈活應用,解決此題問題,可以把圖形放入長方體中分析,體現(xiàn)了數(shù)形結(jié)合的思想和分類討論的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、已知m、n為兩條不同的直線,α、β為兩個不同的平面,則下列命題中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•濰坊二模)已知m,n為兩條不同的直線,α,β為兩個不同的平面,下列四個命題中,錯誤命題的個數(shù)是( 。
①α∥β,m?α,n?β,則m∥n;
②若m?α,n?α,且m∥β,n∥β,則α∥β;
③若α⊥β,m?α,則m⊥β; 
④若α⊥β,m⊥β,m?α,則m∥α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m、n為兩條不同直線,α、β為兩個不重合的平面,給出下列命題中正確的有(  )
m⊥α
m⊥n
⇒n∥α
;
m⊥β
n⊥β
⇒m∥n
;
m⊥α
m⊥β
⇒α∥β
;
m?α
n?α
α∥β
⇒m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島一模)已知m、n為兩條不同的直線,α、β為兩個不同的平面,則下列命題中正確的是( 。

查看答案和解析>>

同步練習冊答案