(2011•鹽城二模)已知函數(shù)f(x)=x+
1
x
+a2,g(x)=x3-a3+2a+1,若存在ξ1、ξ2∈[
1
a
,a
](a>1),使得|f(ξ1)-g(ξ2)|≤9,則a的取值范圍是
(1,4]
(1,4]
分析:存在ξ1、ξ2∈[
1
a
,a
](a>1),使得|f(ξ1)-g(ξ2)|≤9,等價(jià)于存在x∈[
1
a
,a
](a>1),使得|f(x)min-g(x)max|≤9,求出相應(yīng)函數(shù)的最值,得到不等式,即可求出a的取值范圍
解答:解:存在ξ1、ξ2∈[
1
a
,a
](a>1),使得|f(ξ1)-g(ξ2)|≤9,等價(jià)于存在x∈[
1
a
,a
](a>1),使得|f(x)min-g(x)max|≤9
∵函數(shù)f(x)=x+
1
x
+a2,ξ1∈[
1
a
,a
](a>1),∴f(x)=x+
1
x
+a2≥2+a2,即f(x)min=2+a2;
∵g(x)=x3-a3+2a+1,∴g′(x)=3x2,∴函數(shù)g(x)在[
1
a
,a
](a>1)上單調(diào)遞增,
∴g(x)max=g(a)=2a+1
∴|2+a2-2a-1|≤9
∴-3≤a-1≤3
∴-2≤a≤4
∵a>1,∴1<a≤4.
故答案為:(1,4].
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的最值,考查學(xué)生分析解決問題的能力,將存在ξ1、ξ2∈[
1
a
,a
](a>1),使得|f(ξ1)-g(ξ2)|≤9,轉(zhuǎn)化為存在x∈[
1
a
,a
](a>1),使得|f(x)min-g(x)max|≤9是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城二模)選修4-4:坐標(biāo)系與參數(shù)方程
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π3
),它們相交于A、B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城二模)已知a,b,c是非零實(shí)數(shù),則“a,b,c成等比數(shù)列”是“b=
ac
”的
必要不充分
必要不充分
條件(從“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中選擇一個(gè)填空).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城二模)在△ABC中,角A、B、C的所對(duì)邊的長(zhǎng)分別為a、b、c,且a=
5
,b=3,sinC=2sinA.
(Ⅰ)求c的值;
(Ⅱ)求 sin(2A-
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城二模)已知f(x)=cosx,g(x)=sinx,記Sn=2
2n
k=1
f(
(k-1)π
2n
)
-
1
2n
2n
k=1
g(
(k-n-1)π
2n
)
,Tm=S1+S2+…+Sm,若Tm<11,則m的最大值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城二模)在如圖所示的多面體中,已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)均為2,四邊形ABCD是菱形.
(Ⅰ)求證:平面ADC1⊥平面BCC1B1
(Ⅱ)求該多面體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案