【題目】已知f(x)=ax2 , g(x)=loga|x|(a>0且a≠1),若f(4)g(﹣4)<0,則y=f(x),y=g(x)在同一坐標(biāo)系內(nèi)的大致圖象是( )
A.
B.
C.
D.

【答案】B
【解析】解:由題意f(x)=ax2是指數(shù)型的,g(x)=loga|x|是對數(shù)型的且是一個(gè)偶函數(shù),
由f(4)g(﹣4)<0,可得出g(﹣4)<0,由此特征可以確定C、D兩選項(xiàng)不正確,
A,B兩選項(xiàng)中,在(0,+∞)上,函數(shù)是減函數(shù),
故其底數(shù)a∈(0,1)由此知f(x)=ax2 , 是一個(gè)減函數(shù),由此知A不對,B選項(xiàng)是正確答案
故選B
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的偶函數(shù),需要了解一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年奧運(yùn)會(huì)于8月5日在巴西里約熱內(nèi)盧舉行,為了解某單位員工對奧運(yùn)會(huì)的關(guān)注情況,對本單位部分員工進(jìn)行了調(diào)查,得到平均每天看奧運(yùn)會(huì)直播時(shí)間的莖葉圖如下(單位:分鐘),若平均每天看奧運(yùn)會(huì)直播不低于70分鐘的員工可以視為“關(guān)注奧運(yùn)”,否則視為“不關(guān)注奧運(yùn)”.

(1)試完成下面表格,并根據(jù)此數(shù)據(jù)判斷是否有99.5%以上的把握認(rèn)為是否“關(guān)注奧運(yùn)會(huì)”與性別有關(guān)?

(2)若從參與調(diào)查且平均每天觀看奧運(yùn)會(huì)時(shí)間不低于110分鐘的員工中抽取4人,用表示抽取的女員工數(shù),求的分布列和期望值.

參考公式: ,其中

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分別是棱AD、AA、AB的中點(diǎn)。

證明:(1)直線EE//平面FCC

(2)求二面角B-FC-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:
①a1+c1=a2+c2;②a1﹣c1=a2﹣c2;③c1a2>a1c2;④
其中正確式子的序號是(

A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x+2 sin2x+1﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[ , ]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的兩個(gè)焦點(diǎn)為
的曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為2 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是否存在實(shí)數(shù)a,使函數(shù) 為奇函數(shù),同時(shí)使函數(shù) 為偶函數(shù),證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢測某輪胎公司生產(chǎn)的輪胎的寬度,需要抽檢一批輪胎(共10個(gè)輪胎),已知這批輪胎寬度(單位: )的折線圖如下圖所示:

(1)求這批輪胎寬度的平均值;

(2)現(xiàn)將這批輪胎送去質(zhì)檢部進(jìn)行抽檢,抽檢方案是:從這批輪胎中任取5個(gè)作檢驗(yàn),這5個(gè)輪胎的寬度都在內(nèi),則稱這批輪胎合格,如果抽檢不合格,就要重新再抽檢一次,若還是不合格,這批輪胎就認(rèn)定不合格.

求這批輪胎第一次抽檢就合格的概率;

為這批輪胎的抽檢次數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對“兩個(gè)一百年”奮斗目標(biāo)、實(shí)現(xiàn)中華民族偉大復(fù)興中國夢的“關(guān)注度”(單位:天),某中學(xué)團(tuán)委在全校采用隨機(jī)抽樣的方法抽取了80名學(xué)生(其中男女人數(shù)各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組學(xué)生的月“關(guān)注度”分為6組: , , , , ,得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)求抽取的80名學(xué)生中月“關(guān)注度”不少于15天的人數(shù);

(3)在抽取的80名學(xué)生中,從月“關(guān)注度”不少于25天的人中隨機(jī)抽取2人,求至少抽取到1名女生的概率.

查看答案和解析>>

同步練習(xí)冊答案