【題目】在平面四邊形ABCD中,E為BC的中點,且EA=1,ED= .若 =﹣1,則 的值是

【答案】﹣1
【解析】解:以E為原點,以BC為x軸建立平面直角坐標系, ∵EA=1,ED= ,
∴A在以E為圓心,以1為半徑的圓上,D在以E為圓心,以 為半徑的圓上,
設(shè)A(cosθ,sinθ),B(﹣a,0),C(a,0),D( cosα, sinα),
=(﹣a﹣cosθ,﹣sinθ),
=(a﹣cosθ,﹣sinθ),
=( cosα+a, sinα),
=(a﹣ cosα,﹣ sinα),
=cos2θ﹣a2+sin2θ=1﹣a2=﹣1,∴a2=2,
=a2﹣3cos2α﹣3sin2α=2﹣3=﹣1.
故答案:﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), …….

1)令,若對任意的恒成立,求實數(shù)的值;

2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個算法的流程圖,則輸出的a值為(
A.511
B.1023
C.2047
D.4095

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1= ,an+1﹣an+anan+1=0(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:a1+a1a2+a1a2a3+…+a1a2…an<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長度之和,則Sn=尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是(
A.若a1+a2>0,則a2+a3>0
B.若a1+a2<0,則a2+a3<0
C.若0<a1<a2 , 則a2
D.若a1<0,則(a2﹣a1)(a2﹣a3)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,定點為圓上一動點,線段的垂直平分線交線段于點,設(shè)點的軌跡為曲線;

(Ⅰ)求曲線的方程;

(Ⅱ)若經(jīng)過的直線交曲線于不同的兩點,(點在點, 之間),且滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點A(1,1)和B(4,﹣2),且圓心C在直線l:x+y+1=0上.
(Ⅰ)求圓C的標準方程;
(Ⅱ)設(shè)M,N為圓C上兩點,且M,N關(guān)于直線l對稱,若以MN為直徑的圓經(jīng)過原點O,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f ( x)= x2 , g ( x)=a ln x(a>0).
(Ⅰ)求函數(shù) F ( x)=f(x)g(x)的極值
(Ⅱ)若函數(shù) G( x)=f(x)﹣g(x)+(a﹣1)在區(qū)間 ( ,e) 內(nèi)有兩個零點,求的取值范圍;
(Ⅲ)函數(shù) h( x)=g ( x )﹣x+ ,設(shè) x1∈(0,1),x2∈(1,+∞),若 h( x 2)﹣h( x 1)存在最大值,記為 M (a),則當 a≤e+1 時,M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案