已知
e1
e2
是平面上兩個(gè)不共線的向量,向量
a
=2
e1
-
e2
b
=m
e1
+3
e2
.若
a
b
,則實(shí)數(shù)m=
 
分析:利用向量共線的充要條件得到等式;利用平面向量的基本定理列出方程組,求出m的值.
解答:解:∵
a
b

∴存在λ∈R,使得
a
b

2
e1
-
e2
=λ (m
e1
+3
e2
)

2=λm
-1=3λ

解得m=-6
故答案為-6
點(diǎn)評(píng):本題考查向量共線的充要條件、考查平面向量的基本定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
e
1
,
e
2
是平面內(nèi)兩個(gè)不共線的向量,
a
=2
e
1
-
e
2
,
b
=k
e1
+
e2
,若
a
b
,則實(shí)數(shù)k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
e2
是平面上的兩個(gè)單位向量,且|
e1
+
e2
|≤1
,
OP
=m
e1
, 
 OQ
=n
e2
,若O為坐標(biāo)原點(diǎn),m,n均為正常數(shù),則(
OP
+
OQ
)2
的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
、
e2
是平面上兩個(gè)不共線的單位正交向量,向量
a
=
e1
-
e2
,
b
=m
e1
+2
e2
.若
a
b
,則實(shí)數(shù)m=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃浦區(qū)二模 題型:填空題

已知
e1
、
e2
是平面上兩個(gè)不共線的向量,向量
a
=2
e1
-
e2
,
b
=m
e1
+3
e2
.若
a
b
,則實(shí)數(shù)m=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案