A. | 函數(shù)f(x)+x2是奇函數(shù) | B. | 函數(shù)f(x)+|x|是偶函數(shù) | ||
C. | 函數(shù)x2f(x)是奇函數(shù) | D. | 函數(shù)|x|f(x)是偶函數(shù) |
分析 根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
解答 解:∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(-x)=-f(x),
A.f(-x)+(-x)2=-f(x)+x2,則函數(shù)不是奇函數(shù).故A錯(cuò)誤,
B.f(-x)+|-x|=-f(x)+|x|,則函數(shù)不是奇函數(shù).故B錯(cuò)誤,
C.(-x)2f(-x)=-x2f(x)為奇函數(shù),滿足條件.故C正確,
D.|-x|f(-x)=-|x|f(x)為奇函數(shù),故D錯(cuò)誤,
故選:C
點(diǎn)評 本題主要考查函數(shù)奇偶性的判斷,根據(jù)奇偶性的定義是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=sin(x+\frac{π}{2})$ | B. | $f(x)=sin(x-\frac{π}{2})$ | C. | $f(x)=sin(2x+\frac{π}{2})$ | D. | $f(x)=sin(2x-\frac{π}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{6}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{16}+\frac{y^2}{36}=1$ | C. | $\frac{x^2}{36}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{49}+\frac{y^2}{9}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若l∥α,則l平行于α內(nèi)的所有直線 | B. | 若m?α,l?β且l⊥m,則α⊥β | ||
C. | 若l?β,l⊥α,則α⊥β | D. | 若m?α,l?β且α∥β,則m∥l |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com