精英家教網 > 高中數學 > 題目詳情
函數y=tanx 滿足tan(x+
π
4
)=
1+tanx
1-tanx
由該等式也能推證出y=tanx的周期為π,已知函數y=f(x)滿足f(x+a)=
1+f(x)
1-f(x)
,x∈R.a為非零的常數,根據上述論述我們可以類比出函數f(x)的周期為
4a
4a
分析:利用已知條件和類比推理即可得出.
解答:解:∵函數y=f(x)滿足f(x+a)=
1+f(x)
1-f(x)
,x∈R.a為非零的常數,
∴f(x+2a)=
1+f(x+a)
1-f(x+a)
=
1+
1+f(x)
1-f(x)
1-
1+f(x)
1-f(x)
=
2
-2f(x)
=-
1
f(x)
,
f(x+4a)=-
1
f(x+2a)
=-
1
-1
f(x)
=f(x).
故函數f(x)的周期為4a(≠0)
點評:正確理解類比推理是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列命題:
①函數y=tanx的圖象關于點(kπ,0)(k∈Z)對稱;
②若向量a,b,c滿足a•b=a•c且a≠0,則b=c;
③把函數y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
④若數列{an}既是等差數列又是等比數列,則an=an+1(n∈N*)
其中不正確命題的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log
1
3
x
,
(1)當x∈[
1
3
,3]
時,求f(x)的反函數g(x);
(2)求關于x的函數y=[g(x)]2-2ag(x)+3(a≤3)當x∈[-1.1]時的最小值h(a);
(3)我們把同時滿足下列兩個性質的函數稱為“和諧函數”:
①函數在整個定義域上是單調增函數或單調減函數;
②在函數的定義域內存在區(qū)間[p,q](p<q)使得函數在區(qū)間[p,q]上的值域為[p2,q2].
(Ⅰ)判斷(2)中h(x)是否為“和諧函數”?若是,求出p,q的值或關系式;若不是,請說明理由;
(Ⅱ)若關于x的函數y=
x2-1
+t(x≥1)是“和諧函數”,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合M是同時滿足下列兩個性質的函數f(x)的全體:
①f(x)在其定義域上是單調增函數或單調減函數;
②在f(x)的定義域內存在區(qū)間[a,b],使得f(x)在[a,b]上的值域是[
1
2
a,
1
2
b]

(Ⅰ)判斷函數y=-x3是否屬于集合M?并說明理由.若是,請找出區(qū)間[a,b];
(Ⅱ)若函數y=
x-1
+t
∈M,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①函數y=tanx的圖象關于點(kπ,0)(k∈Z)對稱;
②若向量a、b、c滿足a•b=a•c且a≠0,則b=c;
③把函數y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
④若數列{an}既是等差數列又是等比數列,則an=an+1(n∈N*).
其中正確命題的序號為( 。

查看答案和解析>>

同步練習冊答案