已知F、F為雙曲線(a>0,b>0)的焦點(diǎn),過(guò)F作垂直于x軸的直線交雙曲線于點(diǎn)P,且∠PFF=30,求雙曲線的漸近線方程。

雙曲線的漸近線方程為y=±x


解析:

設(shè)F(c,0)(c>0),P(c,y),則,解得y。

∴|P F|=。

又∵在直角三角形P FF中,∠PFF=30 

解法一:|FF|=|P F|,即2c=   將c=a+b代入,解得b=2 a

解法二:|PF|=2|P F|,由雙曲線定義可知,|PF|-|P F|=2a,得|P F|=2a

∵|P F|=,∴2a=,即b=2 a  ∴=

故所求雙曲線的漸近線方程為y=±x 。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,F(xiàn)為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn).P為雙曲線C右支上一點(diǎn),且位于x軸上方,M為左準(zhǔn)線上一點(diǎn),O為坐標(biāo)原點(diǎn).已知四邊形OFPM為平行四邊形,|PF|=λ|OF|.
(Ⅰ)寫出雙曲線C的離心率e與λ的關(guān)系式;
(Ⅱ)當(dāng)λ=1時(shí),設(shè)雙曲線右支與x軸的交點(diǎn)為R,且|PR|=2,求此時(shí)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•蘭州模擬)已知F為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點(diǎn),P為雙曲線C右支上一點(diǎn),且位于x軸上方,M為直線x=-
a2
c
上一點(diǎn),O為坐標(biāo)原點(diǎn),已知
OP
=
OF
+
OM
,且|
OF
|=|
OM
|
,則雙曲線C的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若y=f(x)是定義在R上的函數(shù),則f'(x0)=0是函數(shù)y=f(x)在x=x0處取得極值的必要不充分條件.
②用數(shù)字1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù),則其中數(shù)字2,3相鄰的偶數(shù)有18個(gè).
③已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點(diǎn)的橫坐標(biāo)為x1,x2,若|x1-x2|的最小值為π,則ω的值為2,θ的值為
π
2

④若P為雙曲線x2-
y2
9
=1上一點(diǎn),F(xiàn)1、F2分別為雙曲線的左右焦點(diǎn),且|PF2|=4,則|PF1|=2或6.
其中正確命題的序號(hào)是
②③
②③
(把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中的真命題為
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)復(fù)平面中滿足|z-2|-|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
(2)當(dāng)a在實(shí)數(shù)集R中變化時(shí),復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
(3)已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對(duì)應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個(gè),則總存在實(shí)常數(shù)p、q,使得方程F(px,qy)=0表示一個(gè)圓.

查看答案和解析>>

同步練習(xí)冊(cè)答案