(2013•嘉興二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足
a+c
b
=
sinA-sinB
sinA-sinC

(Ⅰ)求角C;
(Ⅱ)求
a+b
c
的取值范圍.
分析:(Ⅰ)利用正弦定理化簡已知的等式,再利用余弦定理表示出cosC,將得出的關(guān)系式變形后代入求出cosC的值,由C為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出C的度數(shù);
(Ⅱ)所求式子利用正弦定理變形,將sinC的值代入,整理為一個角的正弦函數(shù),由A的范圍求出這個角的范圍,利用正弦函數(shù)的定義域與值域求出范圍即可.
解答:解:(Ⅰ)利用正弦定理化簡已知等式得:
a+c
b
=
a-b
a-c

化簡得a2+b2-ab=c2,即a2+b2-c2=ab,
∴cosC=
a2+b2-c2
2ab
=
1
2
,
∵C為三角形的內(nèi)角,
∴C=
π
3
;
(Ⅱ)
a+b
c
=
sinA+sinB
sinC
=
2
3
[sinA+sin(
3
-A)]=2sin(A+
π
6
),
∵A∈(0,
3
),∴A+
π
6
∈(
π
6
,
6
),
∴sin(A+
π
6
)∈(
1
2
,1],
a+b
c
的取值范圍是(1,2].
點評:此題考查了正弦、余弦定理,正弦函數(shù)的定義域與值域,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)已知點A(-3,0)和圓O:x2+y2=9,AB是圓O的直徑,M和N是AB的三等分點,P(異于A,B)是圓O上的動點,PD⊥AB于D,
PE
ED
(λ>0)
,直線PA與BE交于C,則當λ=
1
8
1
8
時,|CM|+|CN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)如圖,已知拋物線C1x2=2py的焦點在拋物線C2:y=
12
x2+1
上,點P是拋物線C1上的動點.
(Ⅰ)求拋物線C1的方程及其準線方程;
(Ⅱ)過點P作拋物線C2的兩條切線,M、N分別為兩個切點,設(shè)點P到直線MN的距離為d,求d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)已知0<a<1,loga(1-x)<logax則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)設(shè)集合A={1,2,3},B={1,3,9},x∈A,且x∉B,則x=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)若log
1
2
(1-x)<log
1
2
x
,則( 。

查看答案和解析>>

同步練習(xí)冊答案