【題目】某城市實施了機動車尾號限行,該市報社調查組為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調查情況進行整理后制成下表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)請估計該市公眾對“車輛限行”的贊成率和被調查者的年齡平均值;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行追蹤調查,記被選4人中不贊成“車輛限行”的人數為,求隨機變量的分布列和數學期望;
(Ⅲ)若在這50名被調查者中隨機發(fā)出20份的調查問卷,記為所發(fā)到的20人中贊成“車輛限行”的人數,求使概率取得最大值的整數.
科目:高中數學 來源: 題型:
【題目】已知四棱柱ABCD﹣A1B1C1D1的側棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E為A1C的中點
(1)求證:D1E∥平面BB1C1C;
(2)求證:BC⊥A1C;
(3)若A1A=AB,求二面角A1﹣AC﹣B1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f.
(1)如果函數的單調遞減區(qū)間為,求函數的解析式;
(2)在(1)的條件下,求函數的圖象在點處的切線方程;
(3)若不等式恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,點M和N分別是B1C1和BC的中點.
(1)求證:MB∥平面AC1N;
(2)求證:AC⊥MB.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】AC為對稱軸的拋物線的一部分,點B到邊AC的距離為2km,另外兩邊AC,BC的長度分別為8km,2 km.現欲在此地塊內建一形狀為直角梯形DECF的科技園區(qū).
(1)求此曲邊三角形地塊的面積;
(2)求科技園區(qū)面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣ |,其在區(qū)間[0,1]上單調遞增,則a的取值范圍為( )
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣ , ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,已知曲線在點處的切線與直線平行
(Ⅰ)求的值;
(Ⅱ)是否存在自然數,使得方程在內存在唯一的根?如果存在,求出;如果不存在,請說明理由。
(Ⅲ)設函數(表示中的較小者),求的最大值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com