15.已知拋物線C1:x2=2y的焦點(diǎn)為F,以F為圓心的圓C2交C1于A、B,交C1的準(zhǔn)線于C、D,若四邊形ABCD是矩形,則圓C2的方程為( 。
A.x2+(y-$\frac{1}{2}$)2=4B.x2+(y-$\frac{1}{2}$)2=12C.x2+(y-1)2=4D.x2+(y-1)2=12

分析 依題意知,圓C2的圓心坐標(biāo)為F(0,$\frac{1}{2}$),且點(diǎn)F為該矩形ABCD的兩條對(duì)角線的交點(diǎn),利用點(diǎn)F到直線CD的距離與點(diǎn)F到AB的距離相等可求得直線AB的方程為:y=$\frac{3}{2}$,從而可求得A點(diǎn)坐標(biāo),從而可求得圓C2的半徑,于是可得答案.

解答 解:依題意,拋物線C1:x2=2y的焦點(diǎn)為F(0,$\frac{1}{2}$),
∴圓C2的圓心坐標(biāo)為F(0,$\frac{1}{2}$),
作圖如下:

∵四邊形ABCD是矩形,且BD為直徑,AC為直徑,F(xiàn)(0,$\frac{1}{2}$)為圓C2的圓心,
∴點(diǎn)F為該矩形的兩條對(duì)角線的交點(diǎn),
∴點(diǎn)F到直線CD的距離與點(diǎn)F到AB的距離相等,又點(diǎn)F到直線CD的距離d=1,
∴直線AB的方程為:y=$\frac{3}{2}$,
∴A($\sqrt{3}$,$\frac{3}{2}$),
∴圓C2的半徑r=|AF|=$\sqrt{(\sqrt{3}-0)^{2}+(\frac{3}{2}-\frac{1}{2})^{2}}$=2,
∴圓C2的方程為:x2+(y-$\frac{1}{2}$)2=4,
故選:A.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì),考查圓的標(biāo)準(zhǔn)方程的確定,分析得到點(diǎn)F為該矩形ABCD的兩條對(duì)角線的交點(diǎn)是關(guān)鍵,考查作圖、分析與運(yùn)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)平面向量的集合M={$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…$\overrightarrow{{a}_{n}}$}(n>2)滿足:M中任一向量的模不小于其余向量和的模,則|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$|=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)函數(shù)f(x)=(3+2a)x+b是R上的減函數(shù),則a的范圍為(-∞,-1.5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=log4$\frac{{{x^2}+ax+b}}{{{x^2}+x+1}}$的定義域?yàn)镽,且y=f(x+1)的圖象過點(diǎn)A(-1,0).
(1)求實(shí)數(shù)b的值;
(2)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使函數(shù)f(x)在R上的最大值為1-log43?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)(3+2$\sqrt{2}$)n=an+$\sqrt{2}$bn(n∈N*,an∈Z,bn∈Z).
(1)求a3,b3的值;
(2)證明:對(duì)于任意的n∈N*,an為奇數(shù);
(3)對(duì)于任意的n∈N*,an2-2bn2是否為定值?若是,求出該定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=2an+n,則a1=-1,{an}的通項(xiàng)公式an=1-2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知z=1+i,則${z^2}+\overline{z}$=( 。
A.1+2iB.1-2iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=Asinωx(A>0,ω>0)的圖象如圖所示,則A,ω的值分別是3,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\frac{1}{2}$,則$\overrightarrow{a}+2\overrightarrow$與$\overrightarrow$的夾角大小是$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案