1.f(x)=kx-lnx在區(qū)間(1,+∞)上是減函數(shù),k的取值范圍是( 。
A.(-∞,0)B.(-∞,0]C.(-∞,1)D.(-∞,1]

分析 求出函數(shù)的導數(shù),利用函數(shù)f(x)=kx-lnx在區(qū)間(1,+∞)單調減函數(shù),可得f′(x)≤0在區(qū)間(1,+∞)上恒成立,解出即可.

解答 解:f′(x)=k-$\frac{1}{x}$,
∵函數(shù)f(x)=kx-lnx在區(qū)間(1,+∞)單調減函數(shù),
∴f′(x)≤0在區(qū)間(1,+∞)上恒成立,
∴k≤$\frac{1}{x}$,
而y=$\frac{1}{x}$在區(qū)間(1,+∞)上單調遞減,
∴k≤0
∴k的取值范圍是(-∞,0],
故選:B.

點評 本題考查了利用導數(shù)研究函數(shù)的單調性、恒成立問題的等價轉化方法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.對于函數(shù)f(x),若存在實數(shù)M>0,使得對于定義域內的任意的x,使得函數(shù)|f(x)|≤M,則稱函數(shù)f(x)為有界函數(shù),下列函數(shù)是有界函數(shù)的是④⑤⑥
①y=2x+1
②y=-x2+2x
③y=2x-1
④y=lnx(x∈(1,e])
⑤y=2-|x|
⑥$y=\frac{x}{|x|+2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,已知矩形ABCD中,AB=2,AD=1,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM,連結BM.

(Ⅰ)求證:BM⊥平面ADM;
(Ⅱ)求二面角A-DM-C的余弦值; 
(Ⅲ)若點E是線段DB上的一動點,問點E在何位置時,三棱錐M-ADE的體積為$\frac{{\sqrt{2}}}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知P為橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$上的任意一點,O為坐標原點,M在線段OP上,且$\overrightarrow{OM}=\frac{1}{3}\overrightarrow{OP}$
(1)求點M的軌跡E的方程;
(2)若A(-4,0),B(0,4),C為軌跡E上的動點,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-2alnx+(a-2)x,a∈R$
(Ⅰ)當a<0時,討論函數(shù)f(x)的單調性;
(Ⅱ)證明:當$a≤-\frac{1}{2}$時,對任意的x1,x2∈(0,+∞),且x2>x1,都有f(x2)-ax2>f(x1)-ax1成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.(理)已知點P(-4,4),曲線C:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)),若Q是曲線C上的動點,則線段PQ的中點M到直線l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t為參數(shù))距離的最小值為$\frac{8\sqrt{5}}{5}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=2x2-4x+3,則函數(shù)f(x)在[-1,2]上的最大值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=2cos2x+asinx-4在$[{\frac{π}{6},\frac{π}{2}}]$內的圖象恒在x軸下方,則a的取值范圍為a<4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=x2+(m+1)x+(m+1)的圖象與x軸有公共點,則m的取值范圍是(-∞,-1]∪[3,+∞)(用區(qū)間表示).

查看答案和解析>>

同步練習冊答案