平面內(nèi)有k條直線將平面分成f(k)個(gè)區(qū)域,增加一條直線后,平面被分成的區(qū)域最多會(huì)增加
 
個(gè).
考點(diǎn):進(jìn)行簡(jiǎn)單的合情推理
專題:推理和證明
分析:根據(jù)已知中平面內(nèi)有k條直線將平面分成f(k)個(gè)區(qū)域,分析n=2,3,4…時(shí),f(k)的變化規(guī)律,可得答案.
解答: 解:如圖所示,
一條直線最多可以把平面分成2部分,
兩條直線最多可以把平面分成4=2+2部分,
三條直線最多可以把平面分成7=2+2+3部分,
四條直線最多可以把平面分成11=2+2+3+4部分;


故增加第n條直線時(shí),平面被分成的區(qū)域最多會(huì)增加n個(gè),
故答案為:n
點(diǎn)評(píng):歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2+ax-alnx(a∈R),當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=-x與直線y=k(x+1)交于兩點(diǎn)A,B.
(1)若△OAB的面積為
10
,求k的值;    
(2)已知O為原點(diǎn),證明OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐ABC-A1B1C1中,底面ABC是正三角形,側(cè)棱AA1⊥底面ABC,D是BC的中點(diǎn),AA1=AB=1.
(1)求證:平面AB1D⊥平面B1BCC1;
(2)求證:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校要用甲、乙、丙三輛汽車(chē)從新校區(qū)把教職工接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車(chē)走公路①堵車(chē)的概率為
1
4
,不堵車(chē)的概率為
3
4
;汽車(chē)走公路②堵車(chē)的概率為
1
3
,不堵車(chē)的概率為
2
3
.若甲、乙兩輛汽車(chē)走公路①,丙汽車(chē)由于其他 原因走公路②,且三輛車(chē)是否堵車(chē)相互之間沒(méi)有影響.
(Ⅰ)求三輛汽車(chē)中恰有一輛汽車(chē)被堵的概率;
(Ⅱ)求三輛汽車(chē)中被堵車(chē)輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象,則φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,內(nèi)角∠A,∠B,∠C的對(duì)邊分別是a,b,c,acosB+bsinA=c,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且an=n,則數(shù)列{
1
Sn
}前15項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

里氏震級(jí)M的計(jì)算公式為:M=lgA-lgA0,其中A是測(cè)震儀記錄的地震曲線的最大振幅,A0是相應(yīng)的標(biāo)準(zhǔn)地震的振幅,9級(jí)地震的最大振幅是5級(jí)地震最大振幅的
 
倍.

查看答案和解析>>

同步練習(xí)冊(cè)答案