(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,其中且.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點是過點且法向量為的直線上的動點.當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、和的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在處取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)
(1)(2)(3)略
【解析】(1)由題意,
當(dāng),,時,,
,則有或,.
即或,.
又因為,故在內(nèi)的解集為.
(2)由題意,的方程為.在該直線上,故.
因此,,
所以,的值域.
又的解為0和,故要使恒成立,只需
,而,
即,所以的最大值.
(3)解:因為,設(shè)周期.
由于函數(shù)須滿足“圖像關(guān)于點對稱,且在處取得最小值”.
因此,根據(jù)三角函數(shù)的圖像特征可知,
,.
又因為,形如的函數(shù)的圖像的對稱中心都是的零點,故需滿足,而當(dāng),時,
因為,;所以當(dāng)且僅當(dāng),時,的圖像關(guān)于點對稱;此時,,.
(i)當(dāng)時,,進(jìn)一步要使處取得最小值,則有,;又,則有,;因此,由可得,;
(ii)當(dāng)時,,進(jìn)一步要使處取得最小值,則有,;又,則有, ;因此,由可得,;
綜上,使得函數(shù)滿足“圖像關(guān)于點對稱,且在處取得最小值”的充要條件是“當(dāng)時,()或當(dāng)時,()”.
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標(biāo);
(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市嘉定、黃浦區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分18分)本題共有3個小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.
已知拋物線(且為常數(shù)),為其焦點.
(1)寫出焦點的坐標(biāo);
(2)過點的直線與拋物線相交于兩點,且,求直線的斜率;
(3)若線段是過拋物線焦點的兩條動弦,且滿足,如圖所示.求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;
(Ⅲ)過A、B分別作拋物C的切線且交于點M,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿分18分,其中第1小題4分,第2小題6分,第,3小題8分)
一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點到點所經(jīng)過的路程。
(1) 若點為拋物線準(zhǔn)線上
一點,點,均在該拋物線上,并且直線經(jīng)
過該拋物線的焦點,證明.
(2)若點要么落在所表示的曲線上,
要么落在所表示的曲線上,并且,
試寫出(不需證明);
(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標(biāo);
(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com