【題目】人口平均預(yù)期壽命是綜合反映人們健康水平的基本指標(biāo).年第六次全國(guó)人口普查資料表明,隨著我國(guó)社會(huì)經(jīng)濟(jì)的快速發(fā)展,人民生活水平的不斷提高以及醫(yī)療衛(wèi)生保障體系的逐步完善,我國(guó)人口平均預(yù)期壽命繼續(xù)延長(zhǎng),國(guó)民整體健康水平有較大幅度的提高.下圖體現(xiàn)了我國(guó)平均預(yù)期壽命變化情況,依據(jù)此圖,下列結(jié)論錯(cuò)誤的是(

A.男性的平均預(yù)期壽命逐漸延長(zhǎng)

B.女性的平均預(yù)期壽命逐漸延長(zhǎng)

C.男性的平均預(yù)期壽命延長(zhǎng)幅度略高于女性

D.女性的平均預(yù)期壽命延長(zhǎng)幅度略高于男性

【答案】C

【解析】

從圖形中的數(shù)據(jù)變化可判斷A、B選項(xiàng)的正誤;計(jì)算出男性和女性平均預(yù)期壽命延長(zhǎng)幅度,可判斷CD選項(xiàng)的正誤,綜合可得出結(jié)論.

由圖形可知,男性的平均預(yù)期壽命逐漸延長(zhǎng),女性的平均預(yù)期壽命也在逐漸延長(zhǎng),A、B選項(xiàng)均正確;

年到年,男性的平均預(yù)期壽命的增幅為,女性的平均預(yù)期壽命的增幅為,

所以,女性的平均預(yù)期壽命延長(zhǎng)幅度略高于男性,C選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過點(diǎn),且它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同.直線過點(diǎn),且與橢圓相交于兩點(diǎn).

1)求橢圓的方程;

2)若直線的一個(gè)方向向量為,求的面積(其中為坐標(biāo)原點(diǎn));

3)試問:在軸上是否存在點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的短軸長(zhǎng)為2,離心率為,左頂點(diǎn)為A,過點(diǎn)A的直線lC交于另一個(gè)點(diǎn)M,且與直線xt交于點(diǎn)N

1)求橢圓C的方程;

2)是否存在實(shí)數(shù)t,使得為定值?若存在,求實(shí)數(shù)t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線是過點(diǎn)的動(dòng)直線,當(dāng)與圓相切時(shí),同時(shí)也和拋物線相切.

1)求拋物線的方程;

2)直線與拋物線交于不同的兩點(diǎn),與圓交于不同的兩點(diǎn)A、B,面積為,面積為,當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在同一個(gè)球的上,,,.若四面體體積的最大值為,則這個(gè)球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在單位圓Ox2+y21上任取一點(diǎn)Px,y),圓Ox軸正向的交點(diǎn)是A,設(shè)將OA繞原點(diǎn)O旋轉(zhuǎn)到OP所成的角為θ,記x,y關(guān)于θ的表達(dá)式分別為xfθ),ygθ),則下列說(shuō)法正確的是(  )

A.xfθ)是偶函數(shù),ygθ)是奇函數(shù)

B.xfθ)在為增函數(shù),ygθ)在為減函數(shù)

C.fθ+gθ≥1對(duì)于恒成立

D.函數(shù)t2fθ+g2θ)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和Sn滿足4Snan2+2an,nN*.設(shè)bn=(﹣1nanan+1,Tn為數(shù)列{bn}的前n項(xiàng)和,則T2n_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過FTF的垂線交橢圓C于點(diǎn)P,Q.

i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));

ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案