3.下列四組函數(shù)中,表示相等函數(shù)的一組是( 。
A.f(x)=$\sqrt{{x}^{2}}$與g(x)=($\sqrt{x}$)2B.f(x)=|x|與g(x)=$\sqrt{{x}^{2}}$
C.g(x)=$\frac{{x}^{2}-1}{x-1}$與g(x)=x+1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$與g(x)=$\sqrt{{x}^{2}-1}$

分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,即可判斷它們是相等函數(shù).

解答 解:對于A,f(x)=$\sqrt{{x}^{2}}$=|x|的定義域是R,g(x)=${(\sqrt{x})}^{2}$=x的定義域是[0,+∞),
定義域不同,對應(yīng)關(guān)系不同,不是相等函數(shù);
對于B,f(x)=|x|的定義域是R,g(x)=$\sqrt{{x}^{2}}$=|x|的定義域是R,
定義域相同,對應(yīng)關(guān)系也相同,是相等函數(shù);
對于C,f(x)=$\frac{{x}^{2}-1}{x-1}$=x+1的定義域是{x|x≠1},g(x)=x+1的定義域是R,
定義域不相同,不是相等函數(shù);
對于D,f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$的定義域是[1,+∞)
g(x)=$\sqrt{{x}^{2}-1}$的定義域是{x|x≤-1或x≥1},定義域不同,不是相等函數(shù).
故選:B.

點評 本題考查了判斷兩個函數(shù)是否為相等函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)U={不大于10的正整數(shù)},A={10以內(nèi)的質(zhì)數(shù)},B={1,3,5,7,9},則∁UA∩∁UB是( 。
A.{2,4,6,8,9}B.{2,4,6,8,9,10}C.{1,2,6,8,9,10}D.{4,6,8,10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在下列各圖中,兩個變量具有線性相關(guān)關(guān)系的圖是( 。
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\sqrt{x-1}$+lg(2-x)的定義域是(  )
A.(-∞,1]∪(2,+∞)B.(1,2)C.[1,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)全集為U,對于集合A,B,則“A∩B≡∅”是“存在集合C,使得A?C且B?∁UC”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=sinx-$\sqrt{3}$cosx,且函數(shù)f(x+θ)是偶函數(shù),其中θ∈[0,π],則θ=( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線的焦點在x軸上,且經(jīng)過點P$(\frac{1}{4},-1)$,
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)經(jīng)過焦點F且傾斜角是$\frac{π}{4}$的直線L與拋物線相交于兩點A和B,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知隨機變量ξ服從正態(tài)分布N(1,1),若P(ξ<3)=0.976,則P(-1<ξ<3)=( 。
A.0.952B.0.942C.0.954D.0.960

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖所示的程序框圖,若f(x)=logπx,g(x)=lnx,輸入x=2016,則輸出的h(x)=( 。
A.2016B.2017C.logπ2016D.ln2016

查看答案和解析>>

同步練習(xí)冊答案