【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為.

(1)求的值;

(2)函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

【答案】(1)(2)

【解析】試題分析:(1)由兩相鄰對稱軸間的距離為可得半個周期為.進而求出,由偶函數(shù)可得,由三角函數(shù)恒等變形可得.代入自變量即得的值;(2)先根據(jù)圖像變換得到的解析式.再根據(jù)余弦函數(shù)性質(zhì)求的單調(diào)遞減區(qū)間.

試題解析: 解:(1)∵為偶函數(shù),

∴對恒成立,∴.

即:

又∵,故.

由題意得,所以

,∴

(2)將的圖象向右平移個單位后,得到的圖象,再將所得圖象橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到的圖象.

.

當(dāng)

時,單調(diào)遞減,

因此的單調(diào)遞減區(qū)間為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】葫蘆島市某工廠黨委為了研究手機對年輕職工工作和生活的影響情況做了一項調(diào)查:在廠內(nèi)用簡單隨機抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計看手機時間”(單位:小時)進行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計看手機時間”的平均值和所抽取的女生 “每十天累計看手機時間”的中位數(shù)分別是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x[0,1]時,f(x)=x,則函數(shù)y=f(x)-log3|x|的零點個數(shù)是( )

A.多于4個 B.4個

C.3個 D.2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.

(1)求出a,b的值;

(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1 ,正方形的邊長為分別是的中點,是正方形的對角線的交點,是正方形兩對角線的交點,現(xiàn)沿折起到的位置,使得,連結(jié)(如圖2).

(1)求證:;

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)若射線分別交兩點, 求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當(dāng)時,解不等式;

(2)若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

I)求證:當(dāng)時,不等式成立;

II)關(guān)于的不等式上恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點M(1,0)的直線與圓C交于A,B兩點(A在x軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案